refs / ref-cache.con commit refs: handle "refs/bisect/" in `loose_fill_ref_dir()` (e3bf298)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "ref-cache.h"
   5#include "../iterator.h"
   6
   7void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
   8{
   9        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
  10        dir->entries[dir->nr++] = entry;
  11        /* optimize for the case that entries are added in order */
  12        if (dir->nr == 1 ||
  13            (dir->nr == dir->sorted + 1 &&
  14             strcmp(dir->entries[dir->nr - 2]->name,
  15                    dir->entries[dir->nr - 1]->name) < 0))
  16                dir->sorted = dir->nr;
  17}
  18
  19struct ref_dir *get_ref_dir(struct ref_entry *entry)
  20{
  21        struct ref_dir *dir;
  22        assert(entry->flag & REF_DIR);
  23        dir = &entry->u.subdir;
  24        if (entry->flag & REF_INCOMPLETE) {
  25                if (!dir->cache->fill_ref_dir)
  26                        die("BUG: incomplete ref_store without fill_ref_dir function");
  27
  28                dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
  29                entry->flag &= ~REF_INCOMPLETE;
  30        }
  31        return dir;
  32}
  33
  34struct ref_entry *create_ref_entry(const char *refname,
  35                                   const unsigned char *sha1, int flag,
  36                                   int check_name)
  37{
  38        struct ref_entry *ref;
  39
  40        if (check_name &&
  41            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
  42                die("Reference has invalid format: '%s'", refname);
  43        FLEX_ALLOC_STR(ref, name, refname);
  44        hashcpy(ref->u.value.oid.hash, sha1);
  45        oidclr(&ref->u.value.peeled);
  46        ref->flag = flag;
  47        return ref;
  48}
  49
  50struct ref_cache *create_ref_cache(struct ref_store *refs,
  51                                   fill_ref_dir_fn *fill_ref_dir)
  52{
  53        struct ref_cache *ret = xcalloc(1, sizeof(*ret));
  54
  55        ret->ref_store = refs;
  56        ret->fill_ref_dir = fill_ref_dir;
  57        ret->root = create_dir_entry(ret, "", 0, 1);
  58        return ret;
  59}
  60
  61static void clear_ref_dir(struct ref_dir *dir);
  62
  63static void free_ref_entry(struct ref_entry *entry)
  64{
  65        if (entry->flag & REF_DIR) {
  66                /*
  67                 * Do not use get_ref_dir() here, as that might
  68                 * trigger the reading of loose refs.
  69                 */
  70                clear_ref_dir(&entry->u.subdir);
  71        }
  72        free(entry);
  73}
  74
  75void free_ref_cache(struct ref_cache *cache)
  76{
  77        free_ref_entry(cache->root);
  78        free(cache);
  79}
  80
  81/*
  82 * Clear and free all entries in dir, recursively.
  83 */
  84static void clear_ref_dir(struct ref_dir *dir)
  85{
  86        int i;
  87        for (i = 0; i < dir->nr; i++)
  88                free_ref_entry(dir->entries[i]);
  89        free(dir->entries);
  90        dir->sorted = dir->nr = dir->alloc = 0;
  91        dir->entries = NULL;
  92}
  93
  94struct ref_entry *create_dir_entry(struct ref_cache *cache,
  95                                   const char *dirname, size_t len,
  96                                   int incomplete)
  97{
  98        struct ref_entry *direntry;
  99
 100        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 101        direntry->u.subdir.cache = cache;
 102        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 103        return direntry;
 104}
 105
 106static int ref_entry_cmp(const void *a, const void *b)
 107{
 108        struct ref_entry *one = *(struct ref_entry **)a;
 109        struct ref_entry *two = *(struct ref_entry **)b;
 110        return strcmp(one->name, two->name);
 111}
 112
 113static void sort_ref_dir(struct ref_dir *dir);
 114
 115struct string_slice {
 116        size_t len;
 117        const char *str;
 118};
 119
 120static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 121{
 122        const struct string_slice *key = key_;
 123        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 124        int cmp = strncmp(key->str, ent->name, key->len);
 125        if (cmp)
 126                return cmp;
 127        return '\0' - (unsigned char)ent->name[key->len];
 128}
 129
 130int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 131{
 132        struct ref_entry **r;
 133        struct string_slice key;
 134
 135        if (refname == NULL || !dir->nr)
 136                return -1;
 137
 138        sort_ref_dir(dir);
 139        key.len = len;
 140        key.str = refname;
 141        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 142                    ref_entry_cmp_sslice);
 143
 144        if (r == NULL)
 145                return -1;
 146
 147        return r - dir->entries;
 148}
 149
 150/*
 151 * Search for a directory entry directly within dir (without
 152 * recursing).  Sort dir if necessary.  subdirname must be a directory
 153 * name (i.e., end in '/').  If mkdir is set, then create the
 154 * directory if it is missing; otherwise, return NULL if the desired
 155 * directory cannot be found.  dir must already be complete.
 156 */
 157static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 158                                         const char *subdirname, size_t len,
 159                                         int mkdir)
 160{
 161        int entry_index = search_ref_dir(dir, subdirname, len);
 162        struct ref_entry *entry;
 163        if (entry_index == -1) {
 164                if (!mkdir)
 165                        return NULL;
 166                /*
 167                 * Since dir is complete, the absence of a subdir
 168                 * means that the subdir really doesn't exist;
 169                 * therefore, create an empty record for it but mark
 170                 * the record complete.
 171                 */
 172                entry = create_dir_entry(dir->cache, subdirname, len, 0);
 173                add_entry_to_dir(dir, entry);
 174        } else {
 175                entry = dir->entries[entry_index];
 176        }
 177        return get_ref_dir(entry);
 178}
 179
 180struct ref_dir *find_containing_dir(struct ref_dir *dir,
 181                                    const char *refname, int mkdir)
 182{
 183        const char *slash;
 184        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 185                size_t dirnamelen = slash - refname + 1;
 186                struct ref_dir *subdir;
 187                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 188                if (!subdir) {
 189                        dir = NULL;
 190                        break;
 191                }
 192                dir = subdir;
 193        }
 194
 195        return dir;
 196}
 197
 198struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
 199{
 200        int entry_index;
 201        struct ref_entry *entry;
 202        dir = find_containing_dir(dir, refname, 0);
 203        if (!dir)
 204                return NULL;
 205        entry_index = search_ref_dir(dir, refname, strlen(refname));
 206        if (entry_index == -1)
 207                return NULL;
 208        entry = dir->entries[entry_index];
 209        return (entry->flag & REF_DIR) ? NULL : entry;
 210}
 211
 212int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
 213{
 214        int refname_len = strlen(refname);
 215        int entry_index;
 216        struct ref_entry *entry;
 217        int is_dir = refname[refname_len - 1] == '/';
 218        if (is_dir) {
 219                /*
 220                 * refname represents a reference directory.  Remove
 221                 * the trailing slash; otherwise we will get the
 222                 * directory *representing* refname rather than the
 223                 * one *containing* it.
 224                 */
 225                char *dirname = xmemdupz(refname, refname_len - 1);
 226                dir = find_containing_dir(dir, dirname, 0);
 227                free(dirname);
 228        } else {
 229                dir = find_containing_dir(dir, refname, 0);
 230        }
 231        if (!dir)
 232                return -1;
 233        entry_index = search_ref_dir(dir, refname, refname_len);
 234        if (entry_index == -1)
 235                return -1;
 236        entry = dir->entries[entry_index];
 237
 238        memmove(&dir->entries[entry_index],
 239                &dir->entries[entry_index + 1],
 240                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 241                );
 242        dir->nr--;
 243        if (dir->sorted > entry_index)
 244                dir->sorted--;
 245        free_ref_entry(entry);
 246        return dir->nr;
 247}
 248
 249int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
 250{
 251        dir = find_containing_dir(dir, ref->name, 1);
 252        if (!dir)
 253                return -1;
 254        add_entry_to_dir(dir, ref);
 255        return 0;
 256}
 257
 258/*
 259 * Emit a warning and return true iff ref1 and ref2 have the same name
 260 * and the same sha1.  Die if they have the same name but different
 261 * sha1s.
 262 */
 263static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 264{
 265        if (strcmp(ref1->name, ref2->name))
 266                return 0;
 267
 268        /* Duplicate name; make sure that they don't conflict: */
 269
 270        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 271                /* This is impossible by construction */
 272                die("Reference directory conflict: %s", ref1->name);
 273
 274        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 275                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 276
 277        warning("Duplicated ref: %s", ref1->name);
 278        return 1;
 279}
 280
 281/*
 282 * Sort the entries in dir non-recursively (if they are not already
 283 * sorted) and remove any duplicate entries.
 284 */
 285static void sort_ref_dir(struct ref_dir *dir)
 286{
 287        int i, j;
 288        struct ref_entry *last = NULL;
 289
 290        /*
 291         * This check also prevents passing a zero-length array to qsort(),
 292         * which is a problem on some platforms.
 293         */
 294        if (dir->sorted == dir->nr)
 295                return;
 296
 297        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 298
 299        /* Remove any duplicates: */
 300        for (i = 0, j = 0; j < dir->nr; j++) {
 301                struct ref_entry *entry = dir->entries[j];
 302                if (last && is_dup_ref(last, entry))
 303                        free_ref_entry(entry);
 304                else
 305                        last = dir->entries[i++] = entry;
 306        }
 307        dir->sorted = dir->nr = i;
 308}
 309
 310int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 311                             each_ref_entry_fn fn, void *cb_data)
 312{
 313        int i;
 314        assert(dir->sorted == dir->nr);
 315        for (i = offset; i < dir->nr; i++) {
 316                struct ref_entry *entry = dir->entries[i];
 317                int retval;
 318                if (entry->flag & REF_DIR) {
 319                        struct ref_dir *subdir = get_ref_dir(entry);
 320                        sort_ref_dir(subdir);
 321                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 322                } else {
 323                        retval = fn(entry, cb_data);
 324                }
 325                if (retval)
 326                        return retval;
 327        }
 328        return 0;
 329}
 330
 331void prime_ref_dir(struct ref_dir *dir)
 332{
 333        /*
 334         * The hard work of loading loose refs is done by get_ref_dir(), so we
 335         * just need to recurse through all of the sub-directories. We do not
 336         * even need to care about sorting, as traversal order does not matter
 337         * to us.
 338         */
 339        int i;
 340        for (i = 0; i < dir->nr; i++) {
 341                struct ref_entry *entry = dir->entries[i];
 342                if (entry->flag & REF_DIR)
 343                        prime_ref_dir(get_ref_dir(entry));
 344        }
 345}
 346
 347/*
 348 * A level in the reference hierarchy that is currently being iterated
 349 * through.
 350 */
 351struct cache_ref_iterator_level {
 352        /*
 353         * The ref_dir being iterated over at this level. The ref_dir
 354         * is sorted before being stored here.
 355         */
 356        struct ref_dir *dir;
 357
 358        /*
 359         * The index of the current entry within dir (which might
 360         * itself be a directory). If index == -1, then the iteration
 361         * hasn't yet begun. If index == dir->nr, then the iteration
 362         * through this level is over.
 363         */
 364        int index;
 365};
 366
 367/*
 368 * Represent an iteration through a ref_dir in the memory cache. The
 369 * iteration recurses through subdirectories.
 370 */
 371struct cache_ref_iterator {
 372        struct ref_iterator base;
 373
 374        /*
 375         * The number of levels currently on the stack. This is always
 376         * at least 1, because when it becomes zero the iteration is
 377         * ended and this struct is freed.
 378         */
 379        size_t levels_nr;
 380
 381        /* The number of levels that have been allocated on the stack */
 382        size_t levels_alloc;
 383
 384        /*
 385         * A stack of levels. levels[0] is the uppermost level that is
 386         * being iterated over in this iteration. (This is not
 387         * necessary the top level in the references hierarchy. If we
 388         * are iterating through a subtree, then levels[0] will hold
 389         * the ref_dir for that subtree, and subsequent levels will go
 390         * on from there.)
 391         */
 392        struct cache_ref_iterator_level *levels;
 393};
 394
 395static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 396{
 397        struct cache_ref_iterator *iter =
 398                (struct cache_ref_iterator *)ref_iterator;
 399
 400        while (1) {
 401                struct cache_ref_iterator_level *level =
 402                        &iter->levels[iter->levels_nr - 1];
 403                struct ref_dir *dir = level->dir;
 404                struct ref_entry *entry;
 405
 406                if (level->index == -1)
 407                        sort_ref_dir(dir);
 408
 409                if (++level->index == level->dir->nr) {
 410                        /* This level is exhausted; pop up a level */
 411                        if (--iter->levels_nr == 0)
 412                                return ref_iterator_abort(ref_iterator);
 413
 414                        continue;
 415                }
 416
 417                entry = dir->entries[level->index];
 418
 419                if (entry->flag & REF_DIR) {
 420                        /* push down a level */
 421                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 422                                   iter->levels_alloc);
 423
 424                        level = &iter->levels[iter->levels_nr++];
 425                        level->dir = get_ref_dir(entry);
 426                        level->index = -1;
 427                } else {
 428                        iter->base.refname = entry->name;
 429                        iter->base.oid = &entry->u.value.oid;
 430                        iter->base.flags = entry->flag;
 431                        return ITER_OK;
 432                }
 433        }
 434}
 435
 436enum peel_status peel_entry(struct ref_entry *entry, int repeel)
 437{
 438        enum peel_status status;
 439
 440        if (entry->flag & REF_KNOWS_PEELED) {
 441                if (repeel) {
 442                        entry->flag &= ~REF_KNOWS_PEELED;
 443                        oidclr(&entry->u.value.peeled);
 444                } else {
 445                        return is_null_oid(&entry->u.value.peeled) ?
 446                                PEEL_NON_TAG : PEEL_PEELED;
 447                }
 448        }
 449        if (entry->flag & REF_ISBROKEN)
 450                return PEEL_BROKEN;
 451        if (entry->flag & REF_ISSYMREF)
 452                return PEEL_IS_SYMREF;
 453
 454        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
 455        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
 456                entry->flag |= REF_KNOWS_PEELED;
 457        return status;
 458}
 459
 460static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 461                                   struct object_id *peeled)
 462{
 463        struct cache_ref_iterator *iter =
 464                (struct cache_ref_iterator *)ref_iterator;
 465        struct cache_ref_iterator_level *level;
 466        struct ref_entry *entry;
 467
 468        level = &iter->levels[iter->levels_nr - 1];
 469
 470        if (level->index == -1)
 471                die("BUG: peel called before advance for cache iterator");
 472
 473        entry = level->dir->entries[level->index];
 474
 475        if (peel_entry(entry, 0))
 476                return -1;
 477        oidcpy(peeled, &entry->u.value.peeled);
 478        return 0;
 479}
 480
 481static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 482{
 483        struct cache_ref_iterator *iter =
 484                (struct cache_ref_iterator *)ref_iterator;
 485
 486        free(iter->levels);
 487        base_ref_iterator_free(ref_iterator);
 488        return ITER_DONE;
 489}
 490
 491static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 492        cache_ref_iterator_advance,
 493        cache_ref_iterator_peel,
 494        cache_ref_iterator_abort
 495};
 496
 497struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 498{
 499        struct cache_ref_iterator *iter;
 500        struct ref_iterator *ref_iterator;
 501        struct cache_ref_iterator_level *level;
 502
 503        iter = xcalloc(1, sizeof(*iter));
 504        ref_iterator = &iter->base;
 505        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 506        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 507
 508        iter->levels_nr = 1;
 509        level = &iter->levels[0];
 510        level->index = -1;
 511        level->dir = dir;
 512
 513        return ref_iterator;
 514}