refs / ref-cache.con commit refs: record the ref_store in ref_cache, not ref_dir (e00d1a4)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "ref-cache.h"
   5#include "../iterator.h"
   6
   7/* FIXME: This declaration shouldn't be here */
   8void read_loose_refs(const char *dirname, struct ref_dir *dir);
   9
  10void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
  11{
  12        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
  13        dir->entries[dir->nr++] = entry;
  14        /* optimize for the case that entries are added in order */
  15        if (dir->nr == 1 ||
  16            (dir->nr == dir->sorted + 1 &&
  17             strcmp(dir->entries[dir->nr - 2]->name,
  18                    dir->entries[dir->nr - 1]->name) < 0))
  19                dir->sorted = dir->nr;
  20}
  21
  22struct ref_dir *get_ref_dir(struct ref_entry *entry)
  23{
  24        struct ref_dir *dir;
  25        assert(entry->flag & REF_DIR);
  26        dir = &entry->u.subdir;
  27        if (entry->flag & REF_INCOMPLETE) {
  28                read_loose_refs(entry->name, dir);
  29
  30                /*
  31                 * Manually add refs/bisect, which, being
  32                 * per-worktree, might not appear in the directory
  33                 * listing for refs/ in the main repo.
  34                 */
  35                if (!strcmp(entry->name, "refs/")) {
  36                        int pos = search_ref_dir(dir, "refs/bisect/", 12);
  37                        if (pos < 0) {
  38                                struct ref_entry *child_entry;
  39                                child_entry = create_dir_entry(dir->cache,
  40                                                               "refs/bisect/",
  41                                                               12, 1);
  42                                add_entry_to_dir(dir, child_entry);
  43                        }
  44                }
  45                entry->flag &= ~REF_INCOMPLETE;
  46        }
  47        return dir;
  48}
  49
  50struct ref_entry *create_ref_entry(const char *refname,
  51                                   const unsigned char *sha1, int flag,
  52                                   int check_name)
  53{
  54        struct ref_entry *ref;
  55
  56        if (check_name &&
  57            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
  58                die("Reference has invalid format: '%s'", refname);
  59        FLEX_ALLOC_STR(ref, name, refname);
  60        hashcpy(ref->u.value.oid.hash, sha1);
  61        oidclr(&ref->u.value.peeled);
  62        ref->flag = flag;
  63        return ref;
  64}
  65
  66struct ref_cache *create_ref_cache(struct files_ref_store *refs)
  67{
  68        struct ref_cache *ret = xcalloc(1, sizeof(*ret));
  69
  70        ret->ref_store = refs;
  71        ret->root = create_dir_entry(ret, "", 0, 1);
  72        return ret;
  73}
  74
  75static void clear_ref_dir(struct ref_dir *dir);
  76
  77static void free_ref_entry(struct ref_entry *entry)
  78{
  79        if (entry->flag & REF_DIR) {
  80                /*
  81                 * Do not use get_ref_dir() here, as that might
  82                 * trigger the reading of loose refs.
  83                 */
  84                clear_ref_dir(&entry->u.subdir);
  85        }
  86        free(entry);
  87}
  88
  89void free_ref_cache(struct ref_cache *cache)
  90{
  91        free_ref_entry(cache->root);
  92        free(cache);
  93}
  94
  95/*
  96 * Clear and free all entries in dir, recursively.
  97 */
  98static void clear_ref_dir(struct ref_dir *dir)
  99{
 100        int i;
 101        for (i = 0; i < dir->nr; i++)
 102                free_ref_entry(dir->entries[i]);
 103        free(dir->entries);
 104        dir->sorted = dir->nr = dir->alloc = 0;
 105        dir->entries = NULL;
 106}
 107
 108struct ref_entry *create_dir_entry(struct ref_cache *cache,
 109                                   const char *dirname, size_t len,
 110                                   int incomplete)
 111{
 112        struct ref_entry *direntry;
 113
 114        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 115        direntry->u.subdir.cache = cache;
 116        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 117        return direntry;
 118}
 119
 120static int ref_entry_cmp(const void *a, const void *b)
 121{
 122        struct ref_entry *one = *(struct ref_entry **)a;
 123        struct ref_entry *two = *(struct ref_entry **)b;
 124        return strcmp(one->name, two->name);
 125}
 126
 127static void sort_ref_dir(struct ref_dir *dir);
 128
 129struct string_slice {
 130        size_t len;
 131        const char *str;
 132};
 133
 134static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 135{
 136        const struct string_slice *key = key_;
 137        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 138        int cmp = strncmp(key->str, ent->name, key->len);
 139        if (cmp)
 140                return cmp;
 141        return '\0' - (unsigned char)ent->name[key->len];
 142}
 143
 144int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 145{
 146        struct ref_entry **r;
 147        struct string_slice key;
 148
 149        if (refname == NULL || !dir->nr)
 150                return -1;
 151
 152        sort_ref_dir(dir);
 153        key.len = len;
 154        key.str = refname;
 155        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 156                    ref_entry_cmp_sslice);
 157
 158        if (r == NULL)
 159                return -1;
 160
 161        return r - dir->entries;
 162}
 163
 164/*
 165 * Search for a directory entry directly within dir (without
 166 * recursing).  Sort dir if necessary.  subdirname must be a directory
 167 * name (i.e., end in '/').  If mkdir is set, then create the
 168 * directory if it is missing; otherwise, return NULL if the desired
 169 * directory cannot be found.  dir must already be complete.
 170 */
 171static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 172                                         const char *subdirname, size_t len,
 173                                         int mkdir)
 174{
 175        int entry_index = search_ref_dir(dir, subdirname, len);
 176        struct ref_entry *entry;
 177        if (entry_index == -1) {
 178                if (!mkdir)
 179                        return NULL;
 180                /*
 181                 * Since dir is complete, the absence of a subdir
 182                 * means that the subdir really doesn't exist;
 183                 * therefore, create an empty record for it but mark
 184                 * the record complete.
 185                 */
 186                entry = create_dir_entry(dir->cache, subdirname, len, 0);
 187                add_entry_to_dir(dir, entry);
 188        } else {
 189                entry = dir->entries[entry_index];
 190        }
 191        return get_ref_dir(entry);
 192}
 193
 194struct ref_dir *find_containing_dir(struct ref_dir *dir,
 195                                    const char *refname, int mkdir)
 196{
 197        const char *slash;
 198        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 199                size_t dirnamelen = slash - refname + 1;
 200                struct ref_dir *subdir;
 201                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 202                if (!subdir) {
 203                        dir = NULL;
 204                        break;
 205                }
 206                dir = subdir;
 207        }
 208
 209        return dir;
 210}
 211
 212struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
 213{
 214        int entry_index;
 215        struct ref_entry *entry;
 216        dir = find_containing_dir(dir, refname, 0);
 217        if (!dir)
 218                return NULL;
 219        entry_index = search_ref_dir(dir, refname, strlen(refname));
 220        if (entry_index == -1)
 221                return NULL;
 222        entry = dir->entries[entry_index];
 223        return (entry->flag & REF_DIR) ? NULL : entry;
 224}
 225
 226int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
 227{
 228        int refname_len = strlen(refname);
 229        int entry_index;
 230        struct ref_entry *entry;
 231        int is_dir = refname[refname_len - 1] == '/';
 232        if (is_dir) {
 233                /*
 234                 * refname represents a reference directory.  Remove
 235                 * the trailing slash; otherwise we will get the
 236                 * directory *representing* refname rather than the
 237                 * one *containing* it.
 238                 */
 239                char *dirname = xmemdupz(refname, refname_len - 1);
 240                dir = find_containing_dir(dir, dirname, 0);
 241                free(dirname);
 242        } else {
 243                dir = find_containing_dir(dir, refname, 0);
 244        }
 245        if (!dir)
 246                return -1;
 247        entry_index = search_ref_dir(dir, refname, refname_len);
 248        if (entry_index == -1)
 249                return -1;
 250        entry = dir->entries[entry_index];
 251
 252        memmove(&dir->entries[entry_index],
 253                &dir->entries[entry_index + 1],
 254                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 255                );
 256        dir->nr--;
 257        if (dir->sorted > entry_index)
 258                dir->sorted--;
 259        free_ref_entry(entry);
 260        return dir->nr;
 261}
 262
 263int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
 264{
 265        dir = find_containing_dir(dir, ref->name, 1);
 266        if (!dir)
 267                return -1;
 268        add_entry_to_dir(dir, ref);
 269        return 0;
 270}
 271
 272/*
 273 * Emit a warning and return true iff ref1 and ref2 have the same name
 274 * and the same sha1.  Die if they have the same name but different
 275 * sha1s.
 276 */
 277static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 278{
 279        if (strcmp(ref1->name, ref2->name))
 280                return 0;
 281
 282        /* Duplicate name; make sure that they don't conflict: */
 283
 284        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 285                /* This is impossible by construction */
 286                die("Reference directory conflict: %s", ref1->name);
 287
 288        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 289                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 290
 291        warning("Duplicated ref: %s", ref1->name);
 292        return 1;
 293}
 294
 295/*
 296 * Sort the entries in dir non-recursively (if they are not already
 297 * sorted) and remove any duplicate entries.
 298 */
 299static void sort_ref_dir(struct ref_dir *dir)
 300{
 301        int i, j;
 302        struct ref_entry *last = NULL;
 303
 304        /*
 305         * This check also prevents passing a zero-length array to qsort(),
 306         * which is a problem on some platforms.
 307         */
 308        if (dir->sorted == dir->nr)
 309                return;
 310
 311        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 312
 313        /* Remove any duplicates: */
 314        for (i = 0, j = 0; j < dir->nr; j++) {
 315                struct ref_entry *entry = dir->entries[j];
 316                if (last && is_dup_ref(last, entry))
 317                        free_ref_entry(entry);
 318                else
 319                        last = dir->entries[i++] = entry;
 320        }
 321        dir->sorted = dir->nr = i;
 322}
 323
 324int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 325                             each_ref_entry_fn fn, void *cb_data)
 326{
 327        int i;
 328        assert(dir->sorted == dir->nr);
 329        for (i = offset; i < dir->nr; i++) {
 330                struct ref_entry *entry = dir->entries[i];
 331                int retval;
 332                if (entry->flag & REF_DIR) {
 333                        struct ref_dir *subdir = get_ref_dir(entry);
 334                        sort_ref_dir(subdir);
 335                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 336                } else {
 337                        retval = fn(entry, cb_data);
 338                }
 339                if (retval)
 340                        return retval;
 341        }
 342        return 0;
 343}
 344
 345void prime_ref_dir(struct ref_dir *dir)
 346{
 347        /*
 348         * The hard work of loading loose refs is done by get_ref_dir(), so we
 349         * just need to recurse through all of the sub-directories. We do not
 350         * even need to care about sorting, as traversal order does not matter
 351         * to us.
 352         */
 353        int i;
 354        for (i = 0; i < dir->nr; i++) {
 355                struct ref_entry *entry = dir->entries[i];
 356                if (entry->flag & REF_DIR)
 357                        prime_ref_dir(get_ref_dir(entry));
 358        }
 359}
 360
 361/*
 362 * A level in the reference hierarchy that is currently being iterated
 363 * through.
 364 */
 365struct cache_ref_iterator_level {
 366        /*
 367         * The ref_dir being iterated over at this level. The ref_dir
 368         * is sorted before being stored here.
 369         */
 370        struct ref_dir *dir;
 371
 372        /*
 373         * The index of the current entry within dir (which might
 374         * itself be a directory). If index == -1, then the iteration
 375         * hasn't yet begun. If index == dir->nr, then the iteration
 376         * through this level is over.
 377         */
 378        int index;
 379};
 380
 381/*
 382 * Represent an iteration through a ref_dir in the memory cache. The
 383 * iteration recurses through subdirectories.
 384 */
 385struct cache_ref_iterator {
 386        struct ref_iterator base;
 387
 388        /*
 389         * The number of levels currently on the stack. This is always
 390         * at least 1, because when it becomes zero the iteration is
 391         * ended and this struct is freed.
 392         */
 393        size_t levels_nr;
 394
 395        /* The number of levels that have been allocated on the stack */
 396        size_t levels_alloc;
 397
 398        /*
 399         * A stack of levels. levels[0] is the uppermost level that is
 400         * being iterated over in this iteration. (This is not
 401         * necessary the top level in the references hierarchy. If we
 402         * are iterating through a subtree, then levels[0] will hold
 403         * the ref_dir for that subtree, and subsequent levels will go
 404         * on from there.)
 405         */
 406        struct cache_ref_iterator_level *levels;
 407};
 408
 409static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 410{
 411        struct cache_ref_iterator *iter =
 412                (struct cache_ref_iterator *)ref_iterator;
 413
 414        while (1) {
 415                struct cache_ref_iterator_level *level =
 416                        &iter->levels[iter->levels_nr - 1];
 417                struct ref_dir *dir = level->dir;
 418                struct ref_entry *entry;
 419
 420                if (level->index == -1)
 421                        sort_ref_dir(dir);
 422
 423                if (++level->index == level->dir->nr) {
 424                        /* This level is exhausted; pop up a level */
 425                        if (--iter->levels_nr == 0)
 426                                return ref_iterator_abort(ref_iterator);
 427
 428                        continue;
 429                }
 430
 431                entry = dir->entries[level->index];
 432
 433                if (entry->flag & REF_DIR) {
 434                        /* push down a level */
 435                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 436                                   iter->levels_alloc);
 437
 438                        level = &iter->levels[iter->levels_nr++];
 439                        level->dir = get_ref_dir(entry);
 440                        level->index = -1;
 441                } else {
 442                        iter->base.refname = entry->name;
 443                        iter->base.oid = &entry->u.value.oid;
 444                        iter->base.flags = entry->flag;
 445                        return ITER_OK;
 446                }
 447        }
 448}
 449
 450enum peel_status peel_entry(struct ref_entry *entry, int repeel)
 451{
 452        enum peel_status status;
 453
 454        if (entry->flag & REF_KNOWS_PEELED) {
 455                if (repeel) {
 456                        entry->flag &= ~REF_KNOWS_PEELED;
 457                        oidclr(&entry->u.value.peeled);
 458                } else {
 459                        return is_null_oid(&entry->u.value.peeled) ?
 460                                PEEL_NON_TAG : PEEL_PEELED;
 461                }
 462        }
 463        if (entry->flag & REF_ISBROKEN)
 464                return PEEL_BROKEN;
 465        if (entry->flag & REF_ISSYMREF)
 466                return PEEL_IS_SYMREF;
 467
 468        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
 469        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
 470                entry->flag |= REF_KNOWS_PEELED;
 471        return status;
 472}
 473
 474static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 475                                   struct object_id *peeled)
 476{
 477        struct cache_ref_iterator *iter =
 478                (struct cache_ref_iterator *)ref_iterator;
 479        struct cache_ref_iterator_level *level;
 480        struct ref_entry *entry;
 481
 482        level = &iter->levels[iter->levels_nr - 1];
 483
 484        if (level->index == -1)
 485                die("BUG: peel called before advance for cache iterator");
 486
 487        entry = level->dir->entries[level->index];
 488
 489        if (peel_entry(entry, 0))
 490                return -1;
 491        oidcpy(peeled, &entry->u.value.peeled);
 492        return 0;
 493}
 494
 495static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 496{
 497        struct cache_ref_iterator *iter =
 498                (struct cache_ref_iterator *)ref_iterator;
 499
 500        free(iter->levels);
 501        base_ref_iterator_free(ref_iterator);
 502        return ITER_DONE;
 503}
 504
 505static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 506        cache_ref_iterator_advance,
 507        cache_ref_iterator_peel,
 508        cache_ref_iterator_abort
 509};
 510
 511struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 512{
 513        struct cache_ref_iterator *iter;
 514        struct ref_iterator *ref_iterator;
 515        struct cache_ref_iterator_level *level;
 516
 517        iter = xcalloc(1, sizeof(*iter));
 518        ref_iterator = &iter->base;
 519        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 520        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 521
 522        iter->levels_nr = 1;
 523        level = &iter->levels[0];
 524        level->index = -1;
 525        level->dir = dir;
 526
 527        return ref_iterator;
 528}