refs / refs-internal.hon commit convert log_ref_write_fd() to use strbuf (80a6c20)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * The following flags can appear in `ref_update::flags`. Their
  12 * numerical values must not conflict with those of REF_NO_DEREF and
  13 * REF_FORCE_CREATE_REFLOG, which are also stored in
  14 * `ref_update::flags`.
  15 */
  16
  17/*
  18 * The reference should be updated to new_oid.
  19 */
  20#define REF_HAVE_NEW (1 << 2)
  21
  22/*
  23 * The current reference's value should be checked to make sure that
  24 * it agrees with old_oid.
  25 */
  26#define REF_HAVE_OLD (1 << 3)
  27
  28/*
  29 * Return the length of time to retry acquiring a loose reference lock
  30 * before giving up, in milliseconds:
  31 */
  32long get_files_ref_lock_timeout_ms(void);
  33
  34/*
  35 * Return true iff refname is minimally safe. "Safe" here means that
  36 * deleting a loose reference by this name will not do any damage, for
  37 * example by causing a file that is not a reference to be deleted.
  38 * This function does not check that the reference name is legal; for
  39 * that, use check_refname_format().
  40 *
  41 * A refname that starts with "refs/" is considered safe iff it
  42 * doesn't contain any "." or ".." components or consecutive '/'
  43 * characters, end with '/', or (on Windows) contain any '\'
  44 * characters. Names that do not start with "refs/" are considered
  45 * safe iff they consist entirely of upper case characters and '_'
  46 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  47 */
  48int refname_is_safe(const char *refname);
  49
  50/*
  51 * Helper function: return true if refname, which has the specified
  52 * oid and flags, can be resolved to an object in the database. If the
  53 * referred-to object does not exist, emit a warning and return false.
  54 */
  55int ref_resolves_to_object(const char *refname,
  56                           const struct object_id *oid,
  57                           unsigned int flags);
  58
  59enum peel_status {
  60        /* object was peeled successfully: */
  61        PEEL_PEELED = 0,
  62
  63        /*
  64         * object cannot be peeled because the named object (or an
  65         * object referred to by a tag in the peel chain), does not
  66         * exist.
  67         */
  68        PEEL_INVALID = -1,
  69
  70        /* object cannot be peeled because it is not a tag: */
  71        PEEL_NON_TAG = -2,
  72
  73        /* ref_entry contains no peeled value because it is a symref: */
  74        PEEL_IS_SYMREF = -3,
  75
  76        /*
  77         * ref_entry cannot be peeled because it is broken (i.e., the
  78         * symbolic reference cannot even be resolved to an object
  79         * name):
  80         */
  81        PEEL_BROKEN = -4
  82};
  83
  84/*
  85 * Peel the named object; i.e., if the object is a tag, resolve the
  86 * tag recursively until a non-tag is found.  If successful, store the
  87 * result to oid and return PEEL_PEELED.  If the object is not a tag
  88 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
  89 * and leave oid unchanged.
  90 */
  91enum peel_status peel_object(const struct object_id *name, struct object_id *oid);
  92
  93/*
  94 * Copy the reflog message msg to sb while cleaning up the whitespaces.
  95 * Especially, convert LF to space, because reflog file is one line per entry.
  96 */
  97void copy_reflog_msg(struct strbuf *sb, const char *msg);
  98
  99/**
 100 * Information needed for a single ref update. Set new_oid to the new
 101 * value or to null_oid to delete the ref. To check the old value
 102 * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
 103 * to the old value, or to null_oid to ensure the ref does not exist
 104 * before update.
 105 */
 106struct ref_update {
 107        /*
 108         * If (flags & REF_HAVE_NEW), set the reference to this value
 109         * (or delete it, if `new_oid` is `null_oid`).
 110         */
 111        struct object_id new_oid;
 112
 113        /*
 114         * If (flags & REF_HAVE_OLD), check that the reference
 115         * previously had this value (or didn't previously exist, if
 116         * `old_oid` is `null_oid`).
 117         */
 118        struct object_id old_oid;
 119
 120        /*
 121         * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
 122         * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
 123         */
 124        unsigned int flags;
 125
 126        void *backend_data;
 127        unsigned int type;
 128        char *msg;
 129
 130        /*
 131         * If this ref_update was split off of a symref update via
 132         * split_symref_update(), then this member points at that
 133         * update. This is used for two purposes:
 134         * 1. When reporting errors, we report the refname under which
 135         *    the update was originally requested.
 136         * 2. When we read the old value of this reference, we
 137         *    propagate it back to its parent update for recording in
 138         *    the latter's reflog.
 139         */
 140        struct ref_update *parent_update;
 141
 142        const char refname[FLEX_ARRAY];
 143};
 144
 145int refs_read_raw_ref(struct ref_store *ref_store,
 146                      const char *refname, struct object_id *oid,
 147                      struct strbuf *referent, unsigned int *type);
 148
 149/*
 150 * Write an error to `err` and return a nonzero value iff the same
 151 * refname appears multiple times in `refnames`. `refnames` must be
 152 * sorted on entry to this function.
 153 */
 154int ref_update_reject_duplicates(struct string_list *refnames,
 155                                 struct strbuf *err);
 156
 157/*
 158 * Add a ref_update with the specified properties to transaction, and
 159 * return a pointer to the new object. This function does not verify
 160 * that refname is well-formed. new_oid and old_oid are only
 161 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 162 * respectively, are set in flags.
 163 */
 164struct ref_update *ref_transaction_add_update(
 165                struct ref_transaction *transaction,
 166                const char *refname, unsigned int flags,
 167                const struct object_id *new_oid,
 168                const struct object_id *old_oid,
 169                const char *msg);
 170
 171/*
 172 * Transaction states.
 173 *
 174 * OPEN:   The transaction is initialized and new updates can still be
 175 *         added to it. An OPEN transaction can be prepared,
 176 *         committed, freed, or aborted (freeing and aborting an open
 177 *         transaction are equivalent).
 178 *
 179 * PREPARED: ref_transaction_prepare(), which locks all of the
 180 *         references involved in the update and checks that the
 181 *         update has no errors, has been called successfully for the
 182 *         transaction. A PREPARED transaction can be committed or
 183 *         aborted.
 184 *
 185 * CLOSED: The transaction is no longer active. A transaction becomes
 186 *         CLOSED if there is a failure while building the transaction
 187 *         or if a transaction is committed or aborted. A CLOSED
 188 *         transaction can only be freed.
 189 */
 190enum ref_transaction_state {
 191        REF_TRANSACTION_OPEN     = 0,
 192        REF_TRANSACTION_PREPARED = 1,
 193        REF_TRANSACTION_CLOSED   = 2
 194};
 195
 196/*
 197 * Data structure for holding a reference transaction, which can
 198 * consist of checks and updates to multiple references, carried out
 199 * as atomically as possible.  This structure is opaque to callers.
 200 */
 201struct ref_transaction {
 202        struct ref_store *ref_store;
 203        struct ref_update **updates;
 204        size_t alloc;
 205        size_t nr;
 206        enum ref_transaction_state state;
 207        void *backend_data;
 208};
 209
 210/*
 211 * Check for entries in extras that are within the specified
 212 * directory, where dirname is a reference directory name including
 213 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 214 * conflicting references that are found in skip. If there is a
 215 * conflicting reference, return its name.
 216 *
 217 * extras and skip must be sorted lists of reference names. Either one
 218 * can be NULL, signifying the empty list.
 219 */
 220const char *find_descendant_ref(const char *dirname,
 221                                const struct string_list *extras,
 222                                const struct string_list *skip);
 223
 224/*
 225 * Check whether an attempt to rename old_refname to new_refname would
 226 * cause a D/F conflict with any existing reference (other than
 227 * possibly old_refname). If there would be a conflict, emit an error
 228 * message and return false; otherwise, return true.
 229 *
 230 * Note that this function is not safe against all races with other
 231 * processes (though rename_ref() catches some races that might get by
 232 * this check).
 233 */
 234int refs_rename_ref_available(struct ref_store *refs,
 235                              const char *old_refname,
 236                              const char *new_refname);
 237
 238/* We allow "recursive" symbolic refs. Only within reason, though */
 239#define SYMREF_MAXDEPTH 5
 240
 241/* Include broken references in a do_for_each_ref*() iteration: */
 242#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 243
 244/*
 245 * Reference iterators
 246 *
 247 * A reference iterator encapsulates the state of an in-progress
 248 * iteration over references. Create an instance of `struct
 249 * ref_iterator` via one of the functions in this module.
 250 *
 251 * A freshly-created ref_iterator doesn't yet point at a reference. To
 252 * advance the iterator, call ref_iterator_advance(). If successful,
 253 * this sets the iterator's refname, oid, and flags fields to describe
 254 * the next reference and returns ITER_OK. The data pointed at by
 255 * refname and oid belong to the iterator; if you want to retain them
 256 * after calling ref_iterator_advance() again or calling
 257 * ref_iterator_abort(), you must make a copy. When the iteration has
 258 * been exhausted, ref_iterator_advance() releases any resources
 259 * assocated with the iteration, frees the ref_iterator object, and
 260 * returns ITER_DONE. If you want to abort the iteration early, call
 261 * ref_iterator_abort(), which also frees the ref_iterator object and
 262 * any associated resources. If there was an internal error advancing
 263 * to the next entry, ref_iterator_advance() aborts the iteration,
 264 * frees the ref_iterator, and returns ITER_ERROR.
 265 *
 266 * The reference currently being looked at can be peeled by calling
 267 * ref_iterator_peel(). This function is often faster than peel_ref(),
 268 * so it should be preferred when iterating over references.
 269 *
 270 * Putting it all together, a typical iteration looks like this:
 271 *
 272 *     int ok;
 273 *     struct ref_iterator *iter = ...;
 274 *
 275 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 276 *             if (want_to_stop_iteration()) {
 277 *                     ok = ref_iterator_abort(iter);
 278 *                     break;
 279 *             }
 280 *
 281 *             // Access information about the current reference:
 282 *             if (!(iter->flags & REF_ISSYMREF))
 283 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 284 *
 285 *             // If you need to peel the reference:
 286 *             ref_iterator_peel(iter, &oid);
 287 *     }
 288 *
 289 *     if (ok != ITER_DONE)
 290 *             handle_error();
 291 */
 292struct ref_iterator {
 293        struct ref_iterator_vtable *vtable;
 294
 295        /*
 296         * Does this `ref_iterator` iterate over references in order
 297         * by refname?
 298         */
 299        unsigned int ordered : 1;
 300
 301        const char *refname;
 302        const struct object_id *oid;
 303        unsigned int flags;
 304};
 305
 306/*
 307 * Advance the iterator to the first or next item and return ITER_OK.
 308 * If the iteration is exhausted, free the resources associated with
 309 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 310 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 311 * call this function again after it has returned ITER_DONE or
 312 * ITER_ERROR.
 313 */
 314int ref_iterator_advance(struct ref_iterator *ref_iterator);
 315
 316/*
 317 * If possible, peel the reference currently being viewed by the
 318 * iterator. Return 0 on success.
 319 */
 320int ref_iterator_peel(struct ref_iterator *ref_iterator,
 321                      struct object_id *peeled);
 322
 323/*
 324 * End the iteration before it has been exhausted, freeing the
 325 * reference iterator and any associated resources and returning
 326 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 327 */
 328int ref_iterator_abort(struct ref_iterator *ref_iterator);
 329
 330/*
 331 * An iterator over nothing (its first ref_iterator_advance() call
 332 * returns ITER_DONE).
 333 */
 334struct ref_iterator *empty_ref_iterator_begin(void);
 335
 336/*
 337 * Return true iff ref_iterator is an empty_ref_iterator.
 338 */
 339int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 340
 341/*
 342 * Return an iterator that goes over each reference in `refs` for
 343 * which the refname begins with prefix. If trim is non-zero, then
 344 * trim that many characters off the beginning of each refname. flags
 345 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 346 * the iteration. The output is ordered by refname.
 347 */
 348struct ref_iterator *refs_ref_iterator_begin(
 349                struct ref_store *refs,
 350                const char *prefix, int trim, int flags);
 351
 352/*
 353 * A callback function used to instruct merge_ref_iterator how to
 354 * interleave the entries from iter0 and iter1. The function should
 355 * return one of the constants defined in enum iterator_selection. It
 356 * must not advance either of the iterators itself.
 357 *
 358 * The function must be prepared to handle the case that iter0 and/or
 359 * iter1 is NULL, which indicates that the corresponding sub-iterator
 360 * has been exhausted. Its return value must be consistent with the
 361 * current states of the iterators; e.g., it must not return
 362 * ITER_SKIP_1 if iter1 has already been exhausted.
 363 */
 364typedef enum iterator_selection ref_iterator_select_fn(
 365                struct ref_iterator *iter0, struct ref_iterator *iter1,
 366                void *cb_data);
 367
 368/*
 369 * Iterate over the entries from iter0 and iter1, with the values
 370 * interleaved as directed by the select function. The iterator takes
 371 * ownership of iter0 and iter1 and frees them when the iteration is
 372 * over. A derived class should set `ordered` to 1 or 0 based on
 373 * whether it generates its output in order by reference name.
 374 */
 375struct ref_iterator *merge_ref_iterator_begin(
 376                int ordered,
 377                struct ref_iterator *iter0, struct ref_iterator *iter1,
 378                ref_iterator_select_fn *select, void *cb_data);
 379
 380/*
 381 * An iterator consisting of the union of the entries from front and
 382 * back. If there are entries common to the two sub-iterators, use the
 383 * one from front. Each iterator must iterate over its entries in
 384 * strcmp() order by refname for this to work.
 385 *
 386 * The new iterator takes ownership of its arguments and frees them
 387 * when the iteration is over. As a convenience to callers, if front
 388 * or back is an empty_ref_iterator, then abort that one immediately
 389 * and return the other iterator directly, without wrapping it.
 390 */
 391struct ref_iterator *overlay_ref_iterator_begin(
 392                struct ref_iterator *front, struct ref_iterator *back);
 393
 394/*
 395 * Wrap iter0, only letting through the references whose names start
 396 * with prefix. If trim is set, set iter->refname to the name of the
 397 * reference with that many characters trimmed off the front;
 398 * otherwise set it to the full refname. The new iterator takes over
 399 * ownership of iter0 and frees it when iteration is over. It makes
 400 * its own copy of prefix.
 401 *
 402 * As an convenience to callers, if prefix is the empty string and
 403 * trim is zero, this function returns iter0 directly, without
 404 * wrapping it.
 405 *
 406 * The resulting ref_iterator is ordered if iter0 is.
 407 */
 408struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 409                                               const char *prefix,
 410                                               int trim);
 411
 412/* Internal implementation of reference iteration: */
 413
 414/*
 415 * Base class constructor for ref_iterators. Initialize the
 416 * ref_iterator part of iter, setting its vtable pointer as specified.
 417 * `ordered` should be set to 1 if the iterator will iterate over
 418 * references in order by refname; otherwise it should be set to 0.
 419 * This is meant to be called only by the initializers of derived
 420 * classes.
 421 */
 422void base_ref_iterator_init(struct ref_iterator *iter,
 423                            struct ref_iterator_vtable *vtable,
 424                            int ordered);
 425
 426/*
 427 * Base class destructor for ref_iterators. Destroy the ref_iterator
 428 * part of iter and shallow-free the object. This is meant to be
 429 * called only by the destructors of derived classes.
 430 */
 431void base_ref_iterator_free(struct ref_iterator *iter);
 432
 433/* Virtual function declarations for ref_iterators: */
 434
 435typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 436
 437typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 438                                 struct object_id *peeled);
 439
 440/*
 441 * Implementations of this function should free any resources specific
 442 * to the derived class, then call base_ref_iterator_free() to clean
 443 * up and free the ref_iterator object.
 444 */
 445typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 446
 447struct ref_iterator_vtable {
 448        ref_iterator_advance_fn *advance;
 449        ref_iterator_peel_fn *peel;
 450        ref_iterator_abort_fn *abort;
 451};
 452
 453/*
 454 * current_ref_iter is a performance hack: when iterating over
 455 * references using the for_each_ref*() functions, current_ref_iter is
 456 * set to the reference iterator before calling the callback function.
 457 * If the callback function calls peel_ref(), then peel_ref() first
 458 * checks whether the reference to be peeled is the one referred to by
 459 * the iterator (it usually is) and if so, asks the iterator for the
 460 * peeled version of the reference if it is available. This avoids a
 461 * refname lookup in a common case. current_ref_iter is set to NULL
 462 * when the iteration is over.
 463 */
 464extern struct ref_iterator *current_ref_iter;
 465
 466/*
 467 * The common backend for the for_each_*ref* functions. Call fn for
 468 * each reference in iter. If the iterator itself ever returns
 469 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 470 * the iteration and return that value. Otherwise, return 0. In any
 471 * case, free the iterator when done. This function is basically an
 472 * adapter between the callback style of reference iteration and the
 473 * iterator style.
 474 */
 475int do_for_each_ref_iterator(struct ref_iterator *iter,
 476                             each_ref_fn fn, void *cb_data);
 477
 478/*
 479 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 480 * Normally this will be used with a files ref_store, since that's
 481 * where all reference backends will presumably store their
 482 * per-worktree refs.
 483 */
 484#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 485
 486struct ref_store;
 487
 488/* refs backends */
 489
 490/* ref_store_init flags */
 491#define REF_STORE_READ          (1 << 0)
 492#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 493#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 494#define REF_STORE_MAIN          (1 << 3)
 495#define REF_STORE_ALL_CAPS      (REF_STORE_READ | \
 496                                 REF_STORE_WRITE | \
 497                                 REF_STORE_ODB | \
 498                                 REF_STORE_MAIN)
 499
 500/*
 501 * Initialize the ref_store for the specified gitdir. These functions
 502 * should call base_ref_store_init() to initialize the shared part of
 503 * the ref_store and to record the ref_store for later lookup.
 504 */
 505typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 506                                            unsigned int flags);
 507
 508typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 509
 510typedef int ref_transaction_prepare_fn(struct ref_store *refs,
 511                                       struct ref_transaction *transaction,
 512                                       struct strbuf *err);
 513
 514typedef int ref_transaction_finish_fn(struct ref_store *refs,
 515                                      struct ref_transaction *transaction,
 516                                      struct strbuf *err);
 517
 518typedef int ref_transaction_abort_fn(struct ref_store *refs,
 519                                     struct ref_transaction *transaction,
 520                                     struct strbuf *err);
 521
 522typedef int ref_transaction_commit_fn(struct ref_store *refs,
 523                                      struct ref_transaction *transaction,
 524                                      struct strbuf *err);
 525
 526typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 527typedef int create_symref_fn(struct ref_store *ref_store,
 528                             const char *ref_target,
 529                             const char *refs_heads_master,
 530                             const char *logmsg);
 531typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
 532                           struct string_list *refnames, unsigned int flags);
 533typedef int rename_ref_fn(struct ref_store *ref_store,
 534                          const char *oldref, const char *newref,
 535                          const char *logmsg);
 536typedef int copy_ref_fn(struct ref_store *ref_store,
 537                          const char *oldref, const char *newref,
 538                          const char *logmsg);
 539
 540/*
 541 * Iterate over the references in `ref_store` whose names start with
 542 * `prefix`. `prefix` is matched as a literal string, without regard
 543 * for path separators. If prefix is NULL or the empty string, iterate
 544 * over all references in `ref_store`. The output is ordered by
 545 * refname.
 546 */
 547typedef struct ref_iterator *ref_iterator_begin_fn(
 548                struct ref_store *ref_store,
 549                const char *prefix, unsigned int flags);
 550
 551/* reflog functions */
 552
 553/*
 554 * Iterate over the references in the specified ref_store that have a
 555 * reflog. The refs are iterated over in arbitrary order.
 556 */
 557typedef struct ref_iterator *reflog_iterator_begin_fn(
 558                struct ref_store *ref_store);
 559
 560typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 561                                   const char *refname,
 562                                   each_reflog_ent_fn fn,
 563                                   void *cb_data);
 564typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 565                                           const char *refname,
 566                                           each_reflog_ent_fn fn,
 567                                           void *cb_data);
 568typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 569typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 570                             int force_create, struct strbuf *err);
 571typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 572typedef int reflog_expire_fn(struct ref_store *ref_store,
 573                             const char *refname, const struct object_id *oid,
 574                             unsigned int flags,
 575                             reflog_expiry_prepare_fn prepare_fn,
 576                             reflog_expiry_should_prune_fn should_prune_fn,
 577                             reflog_expiry_cleanup_fn cleanup_fn,
 578                             void *policy_cb_data);
 579
 580/*
 581 * Read a reference from the specified reference store, non-recursively.
 582 * Set type to describe the reference, and:
 583 *
 584 * - If refname is the name of a normal reference, fill in oid
 585 *   (leaving referent unchanged).
 586 *
 587 * - If refname is the name of a symbolic reference, write the full
 588 *   name of the reference to which it refers (e.g.
 589 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 590 *   type (leaving oid unchanged). The caller is responsible for
 591 *   validating that referent is a valid reference name.
 592 *
 593 * WARNING: refname might be used as part of a filename, so it is
 594 * important from a security standpoint that it be safe in the sense
 595 * of refname_is_safe(). Moreover, for symrefs this function sets
 596 * referent to whatever the repository says, which might not be a
 597 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 598 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 599 *
 600 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 601 * and return -1. If the ref exists but is neither a symbolic ref nor
 602 * an object ID, it is broken; set REF_ISBROKEN in type, set errno to
 603 * EINVAL, and return -1. If there is another error reading the ref,
 604 * set errno appropriately and return -1.
 605 *
 606 * Backend-specific flags might be set in type as well, regardless of
 607 * outcome.
 608 *
 609 * It is OK for refname to point into referent. If so:
 610 *
 611 * - if the function succeeds with REF_ISSYMREF, referent will be
 612 *   overwritten and the memory formerly pointed to by it might be
 613 *   changed or even freed.
 614 *
 615 * - in all other cases, referent will be untouched, and therefore
 616 *   refname will still be valid and unchanged.
 617 */
 618typedef int read_raw_ref_fn(struct ref_store *ref_store,
 619                            const char *refname, struct object_id *oid,
 620                            struct strbuf *referent, unsigned int *type);
 621
 622struct ref_storage_be {
 623        struct ref_storage_be *next;
 624        const char *name;
 625        ref_store_init_fn *init;
 626        ref_init_db_fn *init_db;
 627
 628        ref_transaction_prepare_fn *transaction_prepare;
 629        ref_transaction_finish_fn *transaction_finish;
 630        ref_transaction_abort_fn *transaction_abort;
 631        ref_transaction_commit_fn *initial_transaction_commit;
 632
 633        pack_refs_fn *pack_refs;
 634        create_symref_fn *create_symref;
 635        delete_refs_fn *delete_refs;
 636        rename_ref_fn *rename_ref;
 637        copy_ref_fn *copy_ref;
 638
 639        ref_iterator_begin_fn *iterator_begin;
 640        read_raw_ref_fn *read_raw_ref;
 641
 642        reflog_iterator_begin_fn *reflog_iterator_begin;
 643        for_each_reflog_ent_fn *for_each_reflog_ent;
 644        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 645        reflog_exists_fn *reflog_exists;
 646        create_reflog_fn *create_reflog;
 647        delete_reflog_fn *delete_reflog;
 648        reflog_expire_fn *reflog_expire;
 649};
 650
 651extern struct ref_storage_be refs_be_files;
 652extern struct ref_storage_be refs_be_packed;
 653
 654/*
 655 * A representation of the reference store for the main repository or
 656 * a submodule. The ref_store instances for submodules are kept in a
 657 * linked list.
 658 */
 659struct ref_store {
 660        /* The backend describing this ref_store's storage scheme: */
 661        const struct ref_storage_be *be;
 662};
 663
 664/*
 665 * Fill in the generic part of refs and add it to our collection of
 666 * reference stores.
 667 */
 668void base_ref_store_init(struct ref_store *refs,
 669                         const struct ref_storage_be *be);
 670
 671#endif /* REFS_REFS_INTERNAL_H */