refs / files-backend.con commit refs: add new ref-store api (7d2df05)
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "../iterator.h"
   5#include "../dir-iterator.h"
   6#include "../lockfile.h"
   7#include "../object.h"
   8#include "../dir.h"
   9
  10struct ref_lock {
  11        char *ref_name;
  12        struct lock_file *lk;
  13        struct object_id old_oid;
  14};
  15
  16struct ref_entry;
  17
  18/*
  19 * Information used (along with the information in ref_entry) to
  20 * describe a single cached reference.  This data structure only
  21 * occurs embedded in a union in struct ref_entry, and only when
  22 * (ref_entry->flag & REF_DIR) is zero.
  23 */
  24struct ref_value {
  25        /*
  26         * The name of the object to which this reference resolves
  27         * (which may be a tag object).  If REF_ISBROKEN, this is
  28         * null.  If REF_ISSYMREF, then this is the name of the object
  29         * referred to by the last reference in the symlink chain.
  30         */
  31        struct object_id oid;
  32
  33        /*
  34         * If REF_KNOWS_PEELED, then this field holds the peeled value
  35         * of this reference, or null if the reference is known not to
  36         * be peelable.  See the documentation for peel_ref() for an
  37         * exact definition of "peelable".
  38         */
  39        struct object_id peeled;
  40};
  41
  42struct files_ref_store;
  43
  44/*
  45 * Information used (along with the information in ref_entry) to
  46 * describe a level in the hierarchy of references.  This data
  47 * structure only occurs embedded in a union in struct ref_entry, and
  48 * only when (ref_entry.flag & REF_DIR) is set.  In that case,
  49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
  50 * in the directory have already been read:
  51 *
  52 *     (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
  53 *         or packed references, already read.
  54 *
  55 *     (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
  56 *         references that hasn't been read yet (nor has any of its
  57 *         subdirectories).
  58 *
  59 * Entries within a directory are stored within a growable array of
  60 * pointers to ref_entries (entries, nr, alloc).  Entries 0 <= i <
  61 * sorted are sorted by their component name in strcmp() order and the
  62 * remaining entries are unsorted.
  63 *
  64 * Loose references are read lazily, one directory at a time.  When a
  65 * directory of loose references is read, then all of the references
  66 * in that directory are stored, and REF_INCOMPLETE stubs are created
  67 * for any subdirectories, but the subdirectories themselves are not
  68 * read.  The reading is triggered by get_ref_dir().
  69 */
  70struct ref_dir {
  71        int nr, alloc;
  72
  73        /*
  74         * Entries with index 0 <= i < sorted are sorted by name.  New
  75         * entries are appended to the list unsorted, and are sorted
  76         * only when required; thus we avoid the need to sort the list
  77         * after the addition of every reference.
  78         */
  79        int sorted;
  80
  81        /* A pointer to the files_ref_store that contains this ref_dir. */
  82        struct files_ref_store *ref_store;
  83
  84        struct ref_entry **entries;
  85};
  86
  87/*
  88 * Bit values for ref_entry::flag.  REF_ISSYMREF=0x01,
  89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
  90 * public values; see refs.h.
  91 */
  92
  93/*
  94 * The field ref_entry->u.value.peeled of this value entry contains
  95 * the correct peeled value for the reference, which might be
  96 * null_sha1 if the reference is not a tag or if it is broken.
  97 */
  98#define REF_KNOWS_PEELED 0x10
  99
 100/* ref_entry represents a directory of references */
 101#define REF_DIR 0x20
 102
 103/*
 104 * Entry has not yet been read from disk (used only for REF_DIR
 105 * entries representing loose references)
 106 */
 107#define REF_INCOMPLETE 0x40
 108
 109/*
 110 * A ref_entry represents either a reference or a "subdirectory" of
 111 * references.
 112 *
 113 * Each directory in the reference namespace is represented by a
 114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
 115 * that holds the entries in that directory that have been read so
 116 * far.  If (flags & REF_INCOMPLETE) is set, then the directory and
 117 * its subdirectories haven't been read yet.  REF_INCOMPLETE is only
 118 * used for loose reference directories.
 119 *
 120 * References are represented by a ref_entry with (flags & REF_DIR)
 121 * unset and a value member that describes the reference's value.  The
 122 * flag member is at the ref_entry level, but it is also needed to
 123 * interpret the contents of the value field (in other words, a
 124 * ref_value object is not very much use without the enclosing
 125 * ref_entry).
 126 *
 127 * Reference names cannot end with slash and directories' names are
 128 * always stored with a trailing slash (except for the top-level
 129 * directory, which is always denoted by "").  This has two nice
 130 * consequences: (1) when the entries in each subdir are sorted
 131 * lexicographically by name (as they usually are), the references in
 132 * a whole tree can be generated in lexicographic order by traversing
 133 * the tree in left-to-right, depth-first order; (2) the names of
 134 * references and subdirectories cannot conflict, and therefore the
 135 * presence of an empty subdirectory does not block the creation of a
 136 * similarly-named reference.  (The fact that reference names with the
 137 * same leading components can conflict *with each other* is a
 138 * separate issue that is regulated by verify_refname_available().)
 139 *
 140 * Please note that the name field contains the fully-qualified
 141 * reference (or subdirectory) name.  Space could be saved by only
 142 * storing the relative names.  But that would require the full names
 143 * to be generated on the fly when iterating in do_for_each_ref(), and
 144 * would break callback functions, who have always been able to assume
 145 * that the name strings that they are passed will not be freed during
 146 * the iteration.
 147 */
 148struct ref_entry {
 149        unsigned char flag; /* ISSYMREF? ISPACKED? */
 150        union {
 151                struct ref_value value; /* if not (flags&REF_DIR) */
 152                struct ref_dir subdir; /* if (flags&REF_DIR) */
 153        } u;
 154        /*
 155         * The full name of the reference (e.g., "refs/heads/master")
 156         * or the full name of the directory with a trailing slash
 157         * (e.g., "refs/heads/"):
 158         */
 159        char name[FLEX_ARRAY];
 160};
 161
 162static void read_loose_refs(const char *dirname, struct ref_dir *dir);
 163static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
 164static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 165                                          const char *dirname, size_t len,
 166                                          int incomplete);
 167static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
 168static int files_log_ref_write(struct files_ref_store *refs,
 169                               const char *refname, const unsigned char *old_sha1,
 170                               const unsigned char *new_sha1, const char *msg,
 171                               int flags, struct strbuf *err);
 172
 173static struct ref_dir *get_ref_dir(struct ref_entry *entry)
 174{
 175        struct ref_dir *dir;
 176        assert(entry->flag & REF_DIR);
 177        dir = &entry->u.subdir;
 178        if (entry->flag & REF_INCOMPLETE) {
 179                read_loose_refs(entry->name, dir);
 180
 181                /*
 182                 * Manually add refs/bisect, which, being
 183                 * per-worktree, might not appear in the directory
 184                 * listing for refs/ in the main repo.
 185                 */
 186                if (!strcmp(entry->name, "refs/")) {
 187                        int pos = search_ref_dir(dir, "refs/bisect/", 12);
 188                        if (pos < 0) {
 189                                struct ref_entry *child_entry;
 190                                child_entry = create_dir_entry(dir->ref_store,
 191                                                               "refs/bisect/",
 192                                                               12, 1);
 193                                add_entry_to_dir(dir, child_entry);
 194                                read_loose_refs("refs/bisect",
 195                                                &child_entry->u.subdir);
 196                        }
 197                }
 198                entry->flag &= ~REF_INCOMPLETE;
 199        }
 200        return dir;
 201}
 202
 203static struct ref_entry *create_ref_entry(const char *refname,
 204                                          const unsigned char *sha1, int flag,
 205                                          int check_name)
 206{
 207        struct ref_entry *ref;
 208
 209        if (check_name &&
 210            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
 211                die("Reference has invalid format: '%s'", refname);
 212        FLEX_ALLOC_STR(ref, name, refname);
 213        hashcpy(ref->u.value.oid.hash, sha1);
 214        oidclr(&ref->u.value.peeled);
 215        ref->flag = flag;
 216        return ref;
 217}
 218
 219static void clear_ref_dir(struct ref_dir *dir);
 220
 221static void free_ref_entry(struct ref_entry *entry)
 222{
 223        if (entry->flag & REF_DIR) {
 224                /*
 225                 * Do not use get_ref_dir() here, as that might
 226                 * trigger the reading of loose refs.
 227                 */
 228                clear_ref_dir(&entry->u.subdir);
 229        }
 230        free(entry);
 231}
 232
 233/*
 234 * Add a ref_entry to the end of dir (unsorted).  Entry is always
 235 * stored directly in dir; no recursion into subdirectories is
 236 * done.
 237 */
 238static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
 239{
 240        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
 241        dir->entries[dir->nr++] = entry;
 242        /* optimize for the case that entries are added in order */
 243        if (dir->nr == 1 ||
 244            (dir->nr == dir->sorted + 1 &&
 245             strcmp(dir->entries[dir->nr - 2]->name,
 246                    dir->entries[dir->nr - 1]->name) < 0))
 247                dir->sorted = dir->nr;
 248}
 249
 250/*
 251 * Clear and free all entries in dir, recursively.
 252 */
 253static void clear_ref_dir(struct ref_dir *dir)
 254{
 255        int i;
 256        for (i = 0; i < dir->nr; i++)
 257                free_ref_entry(dir->entries[i]);
 258        free(dir->entries);
 259        dir->sorted = dir->nr = dir->alloc = 0;
 260        dir->entries = NULL;
 261}
 262
 263/*
 264 * Create a struct ref_entry object for the specified dirname.
 265 * dirname is the name of the directory with a trailing slash (e.g.,
 266 * "refs/heads/") or "" for the top-level directory.
 267 */
 268static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 269                                          const char *dirname, size_t len,
 270                                          int incomplete)
 271{
 272        struct ref_entry *direntry;
 273        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 274        direntry->u.subdir.ref_store = ref_store;
 275        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 276        return direntry;
 277}
 278
 279static int ref_entry_cmp(const void *a, const void *b)
 280{
 281        struct ref_entry *one = *(struct ref_entry **)a;
 282        struct ref_entry *two = *(struct ref_entry **)b;
 283        return strcmp(one->name, two->name);
 284}
 285
 286static void sort_ref_dir(struct ref_dir *dir);
 287
 288struct string_slice {
 289        size_t len;
 290        const char *str;
 291};
 292
 293static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 294{
 295        const struct string_slice *key = key_;
 296        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 297        int cmp = strncmp(key->str, ent->name, key->len);
 298        if (cmp)
 299                return cmp;
 300        return '\0' - (unsigned char)ent->name[key->len];
 301}
 302
 303/*
 304 * Return the index of the entry with the given refname from the
 305 * ref_dir (non-recursively), sorting dir if necessary.  Return -1 if
 306 * no such entry is found.  dir must already be complete.
 307 */
 308static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 309{
 310        struct ref_entry **r;
 311        struct string_slice key;
 312
 313        if (refname == NULL || !dir->nr)
 314                return -1;
 315
 316        sort_ref_dir(dir);
 317        key.len = len;
 318        key.str = refname;
 319        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 320                    ref_entry_cmp_sslice);
 321
 322        if (r == NULL)
 323                return -1;
 324
 325        return r - dir->entries;
 326}
 327
 328/*
 329 * Search for a directory entry directly within dir (without
 330 * recursing).  Sort dir if necessary.  subdirname must be a directory
 331 * name (i.e., end in '/').  If mkdir is set, then create the
 332 * directory if it is missing; otherwise, return NULL if the desired
 333 * directory cannot be found.  dir must already be complete.
 334 */
 335static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 336                                         const char *subdirname, size_t len,
 337                                         int mkdir)
 338{
 339        int entry_index = search_ref_dir(dir, subdirname, len);
 340        struct ref_entry *entry;
 341        if (entry_index == -1) {
 342                if (!mkdir)
 343                        return NULL;
 344                /*
 345                 * Since dir is complete, the absence of a subdir
 346                 * means that the subdir really doesn't exist;
 347                 * therefore, create an empty record for it but mark
 348                 * the record complete.
 349                 */
 350                entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
 351                add_entry_to_dir(dir, entry);
 352        } else {
 353                entry = dir->entries[entry_index];
 354        }
 355        return get_ref_dir(entry);
 356}
 357
 358/*
 359 * If refname is a reference name, find the ref_dir within the dir
 360 * tree that should hold refname.  If refname is a directory name
 361 * (i.e., ends in '/'), then return that ref_dir itself.  dir must
 362 * represent the top-level directory and must already be complete.
 363 * Sort ref_dirs and recurse into subdirectories as necessary.  If
 364 * mkdir is set, then create any missing directories; otherwise,
 365 * return NULL if the desired directory cannot be found.
 366 */
 367static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 368                                           const char *refname, int mkdir)
 369{
 370        const char *slash;
 371        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 372                size_t dirnamelen = slash - refname + 1;
 373                struct ref_dir *subdir;
 374                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 375                if (!subdir) {
 376                        dir = NULL;
 377                        break;
 378                }
 379                dir = subdir;
 380        }
 381
 382        return dir;
 383}
 384
 385/*
 386 * Find the value entry with the given name in dir, sorting ref_dirs
 387 * and recursing into subdirectories as necessary.  If the name is not
 388 * found or it corresponds to a directory entry, return NULL.
 389 */
 390static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
 391{
 392        int entry_index;
 393        struct ref_entry *entry;
 394        dir = find_containing_dir(dir, refname, 0);
 395        if (!dir)
 396                return NULL;
 397        entry_index = search_ref_dir(dir, refname, strlen(refname));
 398        if (entry_index == -1)
 399                return NULL;
 400        entry = dir->entries[entry_index];
 401        return (entry->flag & REF_DIR) ? NULL : entry;
 402}
 403
 404/*
 405 * Remove the entry with the given name from dir, recursing into
 406 * subdirectories as necessary.  If refname is the name of a directory
 407 * (i.e., ends with '/'), then remove the directory and its contents.
 408 * If the removal was successful, return the number of entries
 409 * remaining in the directory entry that contained the deleted entry.
 410 * If the name was not found, return -1.  Please note that this
 411 * function only deletes the entry from the cache; it does not delete
 412 * it from the filesystem or ensure that other cache entries (which
 413 * might be symbolic references to the removed entry) are updated.
 414 * Nor does it remove any containing dir entries that might be made
 415 * empty by the removal.  dir must represent the top-level directory
 416 * and must already be complete.
 417 */
 418static int remove_entry(struct ref_dir *dir, const char *refname)
 419{
 420        int refname_len = strlen(refname);
 421        int entry_index;
 422        struct ref_entry *entry;
 423        int is_dir = refname[refname_len - 1] == '/';
 424        if (is_dir) {
 425                /*
 426                 * refname represents a reference directory.  Remove
 427                 * the trailing slash; otherwise we will get the
 428                 * directory *representing* refname rather than the
 429                 * one *containing* it.
 430                 */
 431                char *dirname = xmemdupz(refname, refname_len - 1);
 432                dir = find_containing_dir(dir, dirname, 0);
 433                free(dirname);
 434        } else {
 435                dir = find_containing_dir(dir, refname, 0);
 436        }
 437        if (!dir)
 438                return -1;
 439        entry_index = search_ref_dir(dir, refname, refname_len);
 440        if (entry_index == -1)
 441                return -1;
 442        entry = dir->entries[entry_index];
 443
 444        memmove(&dir->entries[entry_index],
 445                &dir->entries[entry_index + 1],
 446                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 447                );
 448        dir->nr--;
 449        if (dir->sorted > entry_index)
 450                dir->sorted--;
 451        free_ref_entry(entry);
 452        return dir->nr;
 453}
 454
 455/*
 456 * Add a ref_entry to the ref_dir (unsorted), recursing into
 457 * subdirectories as necessary.  dir must represent the top-level
 458 * directory.  Return 0 on success.
 459 */
 460static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
 461{
 462        dir = find_containing_dir(dir, ref->name, 1);
 463        if (!dir)
 464                return -1;
 465        add_entry_to_dir(dir, ref);
 466        return 0;
 467}
 468
 469/*
 470 * Emit a warning and return true iff ref1 and ref2 have the same name
 471 * and the same sha1.  Die if they have the same name but different
 472 * sha1s.
 473 */
 474static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 475{
 476        if (strcmp(ref1->name, ref2->name))
 477                return 0;
 478
 479        /* Duplicate name; make sure that they don't conflict: */
 480
 481        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 482                /* This is impossible by construction */
 483                die("Reference directory conflict: %s", ref1->name);
 484
 485        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 486                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 487
 488        warning("Duplicated ref: %s", ref1->name);
 489        return 1;
 490}
 491
 492/*
 493 * Sort the entries in dir non-recursively (if they are not already
 494 * sorted) and remove any duplicate entries.
 495 */
 496static void sort_ref_dir(struct ref_dir *dir)
 497{
 498        int i, j;
 499        struct ref_entry *last = NULL;
 500
 501        /*
 502         * This check also prevents passing a zero-length array to qsort(),
 503         * which is a problem on some platforms.
 504         */
 505        if (dir->sorted == dir->nr)
 506                return;
 507
 508        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 509
 510        /* Remove any duplicates: */
 511        for (i = 0, j = 0; j < dir->nr; j++) {
 512                struct ref_entry *entry = dir->entries[j];
 513                if (last && is_dup_ref(last, entry))
 514                        free_ref_entry(entry);
 515                else
 516                        last = dir->entries[i++] = entry;
 517        }
 518        dir->sorted = dir->nr = i;
 519}
 520
 521/*
 522 * Return true if refname, which has the specified oid and flags, can
 523 * be resolved to an object in the database. If the referred-to object
 524 * does not exist, emit a warning and return false.
 525 */
 526static int ref_resolves_to_object(const char *refname,
 527                                  const struct object_id *oid,
 528                                  unsigned int flags)
 529{
 530        if (flags & REF_ISBROKEN)
 531                return 0;
 532        if (!has_sha1_file(oid->hash)) {
 533                error("%s does not point to a valid object!", refname);
 534                return 0;
 535        }
 536        return 1;
 537}
 538
 539/*
 540 * Return true if the reference described by entry can be resolved to
 541 * an object in the database; otherwise, emit a warning and return
 542 * false.
 543 */
 544static int entry_resolves_to_object(struct ref_entry *entry)
 545{
 546        return ref_resolves_to_object(entry->name,
 547                                      &entry->u.value.oid, entry->flag);
 548}
 549
 550typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
 551
 552/*
 553 * Call fn for each reference in dir that has index in the range
 554 * offset <= index < dir->nr.  Recurse into subdirectories that are in
 555 * that index range, sorting them before iterating.  This function
 556 * does not sort dir itself; it should be sorted beforehand.  fn is
 557 * called for all references, including broken ones.
 558 */
 559static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 560                                    each_ref_entry_fn fn, void *cb_data)
 561{
 562        int i;
 563        assert(dir->sorted == dir->nr);
 564        for (i = offset; i < dir->nr; i++) {
 565                struct ref_entry *entry = dir->entries[i];
 566                int retval;
 567                if (entry->flag & REF_DIR) {
 568                        struct ref_dir *subdir = get_ref_dir(entry);
 569                        sort_ref_dir(subdir);
 570                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 571                } else {
 572                        retval = fn(entry, cb_data);
 573                }
 574                if (retval)
 575                        return retval;
 576        }
 577        return 0;
 578}
 579
 580/*
 581 * Load all of the refs from the dir into our in-memory cache. The hard work
 582 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
 583 * through all of the sub-directories. We do not even need to care about
 584 * sorting, as traversal order does not matter to us.
 585 */
 586static void prime_ref_dir(struct ref_dir *dir)
 587{
 588        int i;
 589        for (i = 0; i < dir->nr; i++) {
 590                struct ref_entry *entry = dir->entries[i];
 591                if (entry->flag & REF_DIR)
 592                        prime_ref_dir(get_ref_dir(entry));
 593        }
 594}
 595
 596/*
 597 * A level in the reference hierarchy that is currently being iterated
 598 * through.
 599 */
 600struct cache_ref_iterator_level {
 601        /*
 602         * The ref_dir being iterated over at this level. The ref_dir
 603         * is sorted before being stored here.
 604         */
 605        struct ref_dir *dir;
 606
 607        /*
 608         * The index of the current entry within dir (which might
 609         * itself be a directory). If index == -1, then the iteration
 610         * hasn't yet begun. If index == dir->nr, then the iteration
 611         * through this level is over.
 612         */
 613        int index;
 614};
 615
 616/*
 617 * Represent an iteration through a ref_dir in the memory cache. The
 618 * iteration recurses through subdirectories.
 619 */
 620struct cache_ref_iterator {
 621        struct ref_iterator base;
 622
 623        /*
 624         * The number of levels currently on the stack. This is always
 625         * at least 1, because when it becomes zero the iteration is
 626         * ended and this struct is freed.
 627         */
 628        size_t levels_nr;
 629
 630        /* The number of levels that have been allocated on the stack */
 631        size_t levels_alloc;
 632
 633        /*
 634         * A stack of levels. levels[0] is the uppermost level that is
 635         * being iterated over in this iteration. (This is not
 636         * necessary the top level in the references hierarchy. If we
 637         * are iterating through a subtree, then levels[0] will hold
 638         * the ref_dir for that subtree, and subsequent levels will go
 639         * on from there.)
 640         */
 641        struct cache_ref_iterator_level *levels;
 642};
 643
 644static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 645{
 646        struct cache_ref_iterator *iter =
 647                (struct cache_ref_iterator *)ref_iterator;
 648
 649        while (1) {
 650                struct cache_ref_iterator_level *level =
 651                        &iter->levels[iter->levels_nr - 1];
 652                struct ref_dir *dir = level->dir;
 653                struct ref_entry *entry;
 654
 655                if (level->index == -1)
 656                        sort_ref_dir(dir);
 657
 658                if (++level->index == level->dir->nr) {
 659                        /* This level is exhausted; pop up a level */
 660                        if (--iter->levels_nr == 0)
 661                                return ref_iterator_abort(ref_iterator);
 662
 663                        continue;
 664                }
 665
 666                entry = dir->entries[level->index];
 667
 668                if (entry->flag & REF_DIR) {
 669                        /* push down a level */
 670                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 671                                   iter->levels_alloc);
 672
 673                        level = &iter->levels[iter->levels_nr++];
 674                        level->dir = get_ref_dir(entry);
 675                        level->index = -1;
 676                } else {
 677                        iter->base.refname = entry->name;
 678                        iter->base.oid = &entry->u.value.oid;
 679                        iter->base.flags = entry->flag;
 680                        return ITER_OK;
 681                }
 682        }
 683}
 684
 685static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
 686
 687static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 688                                   struct object_id *peeled)
 689{
 690        struct cache_ref_iterator *iter =
 691                (struct cache_ref_iterator *)ref_iterator;
 692        struct cache_ref_iterator_level *level;
 693        struct ref_entry *entry;
 694
 695        level = &iter->levels[iter->levels_nr - 1];
 696
 697        if (level->index == -1)
 698                die("BUG: peel called before advance for cache iterator");
 699
 700        entry = level->dir->entries[level->index];
 701
 702        if (peel_entry(entry, 0))
 703                return -1;
 704        oidcpy(peeled, &entry->u.value.peeled);
 705        return 0;
 706}
 707
 708static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 709{
 710        struct cache_ref_iterator *iter =
 711                (struct cache_ref_iterator *)ref_iterator;
 712
 713        free(iter->levels);
 714        base_ref_iterator_free(ref_iterator);
 715        return ITER_DONE;
 716}
 717
 718static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 719        cache_ref_iterator_advance,
 720        cache_ref_iterator_peel,
 721        cache_ref_iterator_abort
 722};
 723
 724static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 725{
 726        struct cache_ref_iterator *iter;
 727        struct ref_iterator *ref_iterator;
 728        struct cache_ref_iterator_level *level;
 729
 730        iter = xcalloc(1, sizeof(*iter));
 731        ref_iterator = &iter->base;
 732        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 733        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 734
 735        iter->levels_nr = 1;
 736        level = &iter->levels[0];
 737        level->index = -1;
 738        level->dir = dir;
 739
 740        return ref_iterator;
 741}
 742
 743struct nonmatching_ref_data {
 744        const struct string_list *skip;
 745        const char *conflicting_refname;
 746};
 747
 748static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
 749{
 750        struct nonmatching_ref_data *data = vdata;
 751
 752        if (data->skip && string_list_has_string(data->skip, entry->name))
 753                return 0;
 754
 755        data->conflicting_refname = entry->name;
 756        return 1;
 757}
 758
 759/*
 760 * Return 0 if a reference named refname could be created without
 761 * conflicting with the name of an existing reference in dir.
 762 * See verify_refname_available for more information.
 763 */
 764static int verify_refname_available_dir(const char *refname,
 765                                        const struct string_list *extras,
 766                                        const struct string_list *skip,
 767                                        struct ref_dir *dir,
 768                                        struct strbuf *err)
 769{
 770        const char *slash;
 771        const char *extra_refname;
 772        int pos;
 773        struct strbuf dirname = STRBUF_INIT;
 774        int ret = -1;
 775
 776        /*
 777         * For the sake of comments in this function, suppose that
 778         * refname is "refs/foo/bar".
 779         */
 780
 781        assert(err);
 782
 783        strbuf_grow(&dirname, strlen(refname) + 1);
 784        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 785                /* Expand dirname to the new prefix, not including the trailing slash: */
 786                strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
 787
 788                /*
 789                 * We are still at a leading dir of the refname (e.g.,
 790                 * "refs/foo"; if there is a reference with that name,
 791                 * it is a conflict, *unless* it is in skip.
 792                 */
 793                if (dir) {
 794                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 795                        if (pos >= 0 &&
 796                            (!skip || !string_list_has_string(skip, dirname.buf))) {
 797                                /*
 798                                 * We found a reference whose name is
 799                                 * a proper prefix of refname; e.g.,
 800                                 * "refs/foo", and is not in skip.
 801                                 */
 802                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 803                                            dirname.buf, refname);
 804                                goto cleanup;
 805                        }
 806                }
 807
 808                if (extras && string_list_has_string(extras, dirname.buf) &&
 809                    (!skip || !string_list_has_string(skip, dirname.buf))) {
 810                        strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 811                                    refname, dirname.buf);
 812                        goto cleanup;
 813                }
 814
 815                /*
 816                 * Otherwise, we can try to continue our search with
 817                 * the next component. So try to look up the
 818                 * directory, e.g., "refs/foo/". If we come up empty,
 819                 * we know there is nothing under this whole prefix,
 820                 * but even in that case we still have to continue the
 821                 * search for conflicts with extras.
 822                 */
 823                strbuf_addch(&dirname, '/');
 824                if (dir) {
 825                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 826                        if (pos < 0) {
 827                                /*
 828                                 * There was no directory "refs/foo/",
 829                                 * so there is nothing under this
 830                                 * whole prefix. So there is no need
 831                                 * to continue looking for conflicting
 832                                 * references. But we need to continue
 833                                 * looking for conflicting extras.
 834                                 */
 835                                dir = NULL;
 836                        } else {
 837                                dir = get_ref_dir(dir->entries[pos]);
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * We are at the leaf of our refname (e.g., "refs/foo/bar").
 844         * There is no point in searching for a reference with that
 845         * name, because a refname isn't considered to conflict with
 846         * itself. But we still need to check for references whose
 847         * names are in the "refs/foo/bar/" namespace, because they
 848         * *do* conflict.
 849         */
 850        strbuf_addstr(&dirname, refname + dirname.len);
 851        strbuf_addch(&dirname, '/');
 852
 853        if (dir) {
 854                pos = search_ref_dir(dir, dirname.buf, dirname.len);
 855
 856                if (pos >= 0) {
 857                        /*
 858                         * We found a directory named "$refname/"
 859                         * (e.g., "refs/foo/bar/"). It is a problem
 860                         * iff it contains any ref that is not in
 861                         * "skip".
 862                         */
 863                        struct nonmatching_ref_data data;
 864
 865                        data.skip = skip;
 866                        data.conflicting_refname = NULL;
 867                        dir = get_ref_dir(dir->entries[pos]);
 868                        sort_ref_dir(dir);
 869                        if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
 870                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 871                                            data.conflicting_refname, refname);
 872                                goto cleanup;
 873                        }
 874                }
 875        }
 876
 877        extra_refname = find_descendant_ref(dirname.buf, extras, skip);
 878        if (extra_refname)
 879                strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 880                            refname, extra_refname);
 881        else
 882                ret = 0;
 883
 884cleanup:
 885        strbuf_release(&dirname);
 886        return ret;
 887}
 888
 889struct packed_ref_cache {
 890        struct ref_entry *root;
 891
 892        /*
 893         * Count of references to the data structure in this instance,
 894         * including the pointer from files_ref_store::packed if any.
 895         * The data will not be freed as long as the reference count
 896         * is nonzero.
 897         */
 898        unsigned int referrers;
 899
 900        /*
 901         * Iff the packed-refs file associated with this instance is
 902         * currently locked for writing, this points at the associated
 903         * lock (which is owned by somebody else).  The referrer count
 904         * is also incremented when the file is locked and decremented
 905         * when it is unlocked.
 906         */
 907        struct lock_file *lock;
 908
 909        /* The metadata from when this packed-refs cache was read */
 910        struct stat_validity validity;
 911};
 912
 913/*
 914 * Future: need to be in "struct repository"
 915 * when doing a full libification.
 916 */
 917struct files_ref_store {
 918        struct ref_store base;
 919        unsigned int store_flags;
 920
 921        char *gitdir;
 922        char *gitcommondir;
 923        char *packed_refs_path;
 924
 925        struct ref_entry *loose;
 926        struct packed_ref_cache *packed;
 927};
 928
 929/* Lock used for the main packed-refs file: */
 930static struct lock_file packlock;
 931
 932/*
 933 * Increment the reference count of *packed_refs.
 934 */
 935static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
 936{
 937        packed_refs->referrers++;
 938}
 939
 940/*
 941 * Decrease the reference count of *packed_refs.  If it goes to zero,
 942 * free *packed_refs and return true; otherwise return false.
 943 */
 944static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
 945{
 946        if (!--packed_refs->referrers) {
 947                free_ref_entry(packed_refs->root);
 948                stat_validity_clear(&packed_refs->validity);
 949                free(packed_refs);
 950                return 1;
 951        } else {
 952                return 0;
 953        }
 954}
 955
 956static void clear_packed_ref_cache(struct files_ref_store *refs)
 957{
 958        if (refs->packed) {
 959                struct packed_ref_cache *packed_refs = refs->packed;
 960
 961                if (packed_refs->lock)
 962                        die("internal error: packed-ref cache cleared while locked");
 963                refs->packed = NULL;
 964                release_packed_ref_cache(packed_refs);
 965        }
 966}
 967
 968static void clear_loose_ref_cache(struct files_ref_store *refs)
 969{
 970        if (refs->loose) {
 971                free_ref_entry(refs->loose);
 972                refs->loose = NULL;
 973        }
 974}
 975
 976/*
 977 * Create a new submodule ref cache and add it to the internal
 978 * set of caches.
 979 */
 980static struct ref_store *files_ref_store_create(const char *gitdir,
 981                                                unsigned int flags)
 982{
 983        struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
 984        struct ref_store *ref_store = (struct ref_store *)refs;
 985        struct strbuf sb = STRBUF_INIT;
 986
 987        base_ref_store_init(ref_store, &refs_be_files);
 988        refs->store_flags = flags;
 989
 990        refs->gitdir = xstrdup(gitdir);
 991        get_common_dir_noenv(&sb, gitdir);
 992        refs->gitcommondir = strbuf_detach(&sb, NULL);
 993        strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
 994        refs->packed_refs_path = strbuf_detach(&sb, NULL);
 995
 996        return ref_store;
 997}
 998
 999/*
1000 * Die if refs is not the main ref store. caller is used in any
1001 * necessary error messages.
1002 */
1003static void files_assert_main_repository(struct files_ref_store *refs,
1004                                         const char *caller)
1005{
1006        if (refs->store_flags & REF_STORE_MAIN)
1007                return;
1008
1009        die("BUG: operation %s only allowed for main ref store", caller);
1010}
1011
1012/*
1013 * Downcast ref_store to files_ref_store. Die if ref_store is not a
1014 * files_ref_store. required_flags is compared with ref_store's
1015 * store_flags to ensure the ref_store has all required capabilities.
1016 * "caller" is used in any necessary error messages.
1017 */
1018static struct files_ref_store *files_downcast(struct ref_store *ref_store,
1019                                              unsigned int required_flags,
1020                                              const char *caller)
1021{
1022        struct files_ref_store *refs;
1023
1024        if (ref_store->be != &refs_be_files)
1025                die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1026                    ref_store->be->name, caller);
1027
1028        refs = (struct files_ref_store *)ref_store;
1029
1030        if ((refs->store_flags & required_flags) != required_flags)
1031                die("BUG: operation %s requires abilities 0x%x, but only have 0x%x",
1032                    caller, required_flags, refs->store_flags);
1033
1034        return refs;
1035}
1036
1037/* The length of a peeled reference line in packed-refs, including EOL: */
1038#define PEELED_LINE_LENGTH 42
1039
1040/*
1041 * The packed-refs header line that we write out.  Perhaps other
1042 * traits will be added later.  The trailing space is required.
1043 */
1044static const char PACKED_REFS_HEADER[] =
1045        "# pack-refs with: peeled fully-peeled \n";
1046
1047/*
1048 * Parse one line from a packed-refs file.  Write the SHA1 to sha1.
1049 * Return a pointer to the refname within the line (null-terminated),
1050 * or NULL if there was a problem.
1051 */
1052static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1053{
1054        const char *ref;
1055
1056        /*
1057         * 42: the answer to everything.
1058         *
1059         * In this case, it happens to be the answer to
1060         *  40 (length of sha1 hex representation)
1061         *  +1 (space in between hex and name)
1062         *  +1 (newline at the end of the line)
1063         */
1064        if (line->len <= 42)
1065                return NULL;
1066
1067        if (get_sha1_hex(line->buf, sha1) < 0)
1068                return NULL;
1069        if (!isspace(line->buf[40]))
1070                return NULL;
1071
1072        ref = line->buf + 41;
1073        if (isspace(*ref))
1074                return NULL;
1075
1076        if (line->buf[line->len - 1] != '\n')
1077                return NULL;
1078        line->buf[--line->len] = 0;
1079
1080        return ref;
1081}
1082
1083/*
1084 * Read f, which is a packed-refs file, into dir.
1085 *
1086 * A comment line of the form "# pack-refs with: " may contain zero or
1087 * more traits. We interpret the traits as follows:
1088 *
1089 *   No traits:
1090 *
1091 *      Probably no references are peeled. But if the file contains a
1092 *      peeled value for a reference, we will use it.
1093 *
1094 *   peeled:
1095 *
1096 *      References under "refs/tags/", if they *can* be peeled, *are*
1097 *      peeled in this file. References outside of "refs/tags/" are
1098 *      probably not peeled even if they could have been, but if we find
1099 *      a peeled value for such a reference we will use it.
1100 *
1101 *   fully-peeled:
1102 *
1103 *      All references in the file that can be peeled are peeled.
1104 *      Inversely (and this is more important), any references in the
1105 *      file for which no peeled value is recorded is not peelable. This
1106 *      trait should typically be written alongside "peeled" for
1107 *      compatibility with older clients, but we do not require it
1108 *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
1109 */
1110static void read_packed_refs(FILE *f, struct ref_dir *dir)
1111{
1112        struct ref_entry *last = NULL;
1113        struct strbuf line = STRBUF_INIT;
1114        enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1115
1116        while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1117                unsigned char sha1[20];
1118                const char *refname;
1119                const char *traits;
1120
1121                if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1122                        if (strstr(traits, " fully-peeled "))
1123                                peeled = PEELED_FULLY;
1124                        else if (strstr(traits, " peeled "))
1125                                peeled = PEELED_TAGS;
1126                        /* perhaps other traits later as well */
1127                        continue;
1128                }
1129
1130                refname = parse_ref_line(&line, sha1);
1131                if (refname) {
1132                        int flag = REF_ISPACKED;
1133
1134                        if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1135                                if (!refname_is_safe(refname))
1136                                        die("packed refname is dangerous: %s", refname);
1137                                hashclr(sha1);
1138                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1139                        }
1140                        last = create_ref_entry(refname, sha1, flag, 0);
1141                        if (peeled == PEELED_FULLY ||
1142                            (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1143                                last->flag |= REF_KNOWS_PEELED;
1144                        add_ref(dir, last);
1145                        continue;
1146                }
1147                if (last &&
1148                    line.buf[0] == '^' &&
1149                    line.len == PEELED_LINE_LENGTH &&
1150                    line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1151                    !get_sha1_hex(line.buf + 1, sha1)) {
1152                        hashcpy(last->u.value.peeled.hash, sha1);
1153                        /*
1154                         * Regardless of what the file header said,
1155                         * we definitely know the value of *this*
1156                         * reference:
1157                         */
1158                        last->flag |= REF_KNOWS_PEELED;
1159                }
1160        }
1161
1162        strbuf_release(&line);
1163}
1164
1165static const char *files_packed_refs_path(struct files_ref_store *refs)
1166{
1167        return refs->packed_refs_path;
1168}
1169
1170static void files_reflog_path(struct files_ref_store *refs,
1171                              struct strbuf *sb,
1172                              const char *refname)
1173{
1174        if (!refname) {
1175                /*
1176                 * FIXME: of course this is wrong in multi worktree
1177                 * setting. To be fixed real soon.
1178                 */
1179                strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1180                return;
1181        }
1182
1183        switch (ref_type(refname)) {
1184        case REF_TYPE_PER_WORKTREE:
1185        case REF_TYPE_PSEUDOREF:
1186                strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1187                break;
1188        case REF_TYPE_NORMAL:
1189                strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1190                break;
1191        default:
1192                die("BUG: unknown ref type %d of ref %s",
1193                    ref_type(refname), refname);
1194        }
1195}
1196
1197static void files_ref_path(struct files_ref_store *refs,
1198                           struct strbuf *sb,
1199                           const char *refname)
1200{
1201        switch (ref_type(refname)) {
1202        case REF_TYPE_PER_WORKTREE:
1203        case REF_TYPE_PSEUDOREF:
1204                strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1205                break;
1206        case REF_TYPE_NORMAL:
1207                strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1208                break;
1209        default:
1210                die("BUG: unknown ref type %d of ref %s",
1211                    ref_type(refname), refname);
1212        }
1213}
1214
1215/*
1216 * Get the packed_ref_cache for the specified files_ref_store,
1217 * creating it if necessary.
1218 */
1219static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1220{
1221        const char *packed_refs_file = files_packed_refs_path(refs);
1222
1223        if (refs->packed &&
1224            !stat_validity_check(&refs->packed->validity, packed_refs_file))
1225                clear_packed_ref_cache(refs);
1226
1227        if (!refs->packed) {
1228                FILE *f;
1229
1230                refs->packed = xcalloc(1, sizeof(*refs->packed));
1231                acquire_packed_ref_cache(refs->packed);
1232                refs->packed->root = create_dir_entry(refs, "", 0, 0);
1233                f = fopen(packed_refs_file, "r");
1234                if (f) {
1235                        stat_validity_update(&refs->packed->validity, fileno(f));
1236                        read_packed_refs(f, get_ref_dir(refs->packed->root));
1237                        fclose(f);
1238                }
1239        }
1240        return refs->packed;
1241}
1242
1243static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1244{
1245        return get_ref_dir(packed_ref_cache->root);
1246}
1247
1248static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1249{
1250        return get_packed_ref_dir(get_packed_ref_cache(refs));
1251}
1252
1253/*
1254 * Add a reference to the in-memory packed reference cache.  This may
1255 * only be called while the packed-refs file is locked (see
1256 * lock_packed_refs()).  To actually write the packed-refs file, call
1257 * commit_packed_refs().
1258 */
1259static void add_packed_ref(struct files_ref_store *refs,
1260                           const char *refname, const unsigned char *sha1)
1261{
1262        struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1263
1264        if (!packed_ref_cache->lock)
1265                die("internal error: packed refs not locked");
1266        add_ref(get_packed_ref_dir(packed_ref_cache),
1267                create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1268}
1269
1270/*
1271 * Read the loose references from the namespace dirname into dir
1272 * (without recursing).  dirname must end with '/'.  dir must be the
1273 * directory entry corresponding to dirname.
1274 */
1275static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1276{
1277        struct files_ref_store *refs = dir->ref_store;
1278        DIR *d;
1279        struct dirent *de;
1280        int dirnamelen = strlen(dirname);
1281        struct strbuf refname;
1282        struct strbuf path = STRBUF_INIT;
1283        size_t path_baselen;
1284
1285        files_ref_path(refs, &path, dirname);
1286        path_baselen = path.len;
1287
1288        d = opendir(path.buf);
1289        if (!d) {
1290                strbuf_release(&path);
1291                return;
1292        }
1293
1294        strbuf_init(&refname, dirnamelen + 257);
1295        strbuf_add(&refname, dirname, dirnamelen);
1296
1297        while ((de = readdir(d)) != NULL) {
1298                unsigned char sha1[20];
1299                struct stat st;
1300                int flag;
1301
1302                if (de->d_name[0] == '.')
1303                        continue;
1304                if (ends_with(de->d_name, ".lock"))
1305                        continue;
1306                strbuf_addstr(&refname, de->d_name);
1307                strbuf_addstr(&path, de->d_name);
1308                if (stat(path.buf, &st) < 0) {
1309                        ; /* silently ignore */
1310                } else if (S_ISDIR(st.st_mode)) {
1311                        strbuf_addch(&refname, '/');
1312                        add_entry_to_dir(dir,
1313                                         create_dir_entry(refs, refname.buf,
1314                                                          refname.len, 1));
1315                } else {
1316                        if (!refs_resolve_ref_unsafe(&refs->base,
1317                                                     refname.buf,
1318                                                     RESOLVE_REF_READING,
1319                                                     sha1, &flag)) {
1320                                hashclr(sha1);
1321                                flag |= REF_ISBROKEN;
1322                        } else if (is_null_sha1(sha1)) {
1323                                /*
1324                                 * It is so astronomically unlikely
1325                                 * that NULL_SHA1 is the SHA-1 of an
1326                                 * actual object that we consider its
1327                                 * appearance in a loose reference
1328                                 * file to be repo corruption
1329                                 * (probably due to a software bug).
1330                                 */
1331                                flag |= REF_ISBROKEN;
1332                        }
1333
1334                        if (check_refname_format(refname.buf,
1335                                                 REFNAME_ALLOW_ONELEVEL)) {
1336                                if (!refname_is_safe(refname.buf))
1337                                        die("loose refname is dangerous: %s", refname.buf);
1338                                hashclr(sha1);
1339                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1340                        }
1341                        add_entry_to_dir(dir,
1342                                         create_ref_entry(refname.buf, sha1, flag, 0));
1343                }
1344                strbuf_setlen(&refname, dirnamelen);
1345                strbuf_setlen(&path, path_baselen);
1346        }
1347        strbuf_release(&refname);
1348        strbuf_release(&path);
1349        closedir(d);
1350}
1351
1352static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1353{
1354        if (!refs->loose) {
1355                /*
1356                 * Mark the top-level directory complete because we
1357                 * are about to read the only subdirectory that can
1358                 * hold references:
1359                 */
1360                refs->loose = create_dir_entry(refs, "", 0, 0);
1361                /*
1362                 * Create an incomplete entry for "refs/":
1363                 */
1364                add_entry_to_dir(get_ref_dir(refs->loose),
1365                                 create_dir_entry(refs, "refs/", 5, 1));
1366        }
1367        return get_ref_dir(refs->loose);
1368}
1369
1370/*
1371 * Return the ref_entry for the given refname from the packed
1372 * references.  If it does not exist, return NULL.
1373 */
1374static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1375                                        const char *refname)
1376{
1377        return find_ref(get_packed_refs(refs), refname);
1378}
1379
1380/*
1381 * A loose ref file doesn't exist; check for a packed ref.
1382 */
1383static int resolve_packed_ref(struct files_ref_store *refs,
1384                              const char *refname,
1385                              unsigned char *sha1, unsigned int *flags)
1386{
1387        struct ref_entry *entry;
1388
1389        /*
1390         * The loose reference file does not exist; check for a packed
1391         * reference.
1392         */
1393        entry = get_packed_ref(refs, refname);
1394        if (entry) {
1395                hashcpy(sha1, entry->u.value.oid.hash);
1396                *flags |= REF_ISPACKED;
1397                return 0;
1398        }
1399        /* refname is not a packed reference. */
1400        return -1;
1401}
1402
1403static int files_read_raw_ref(struct ref_store *ref_store,
1404                              const char *refname, unsigned char *sha1,
1405                              struct strbuf *referent, unsigned int *type)
1406{
1407        struct files_ref_store *refs =
1408                files_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
1409        struct strbuf sb_contents = STRBUF_INIT;
1410        struct strbuf sb_path = STRBUF_INIT;
1411        const char *path;
1412        const char *buf;
1413        struct stat st;
1414        int fd;
1415        int ret = -1;
1416        int save_errno;
1417        int remaining_retries = 3;
1418
1419        *type = 0;
1420        strbuf_reset(&sb_path);
1421
1422        files_ref_path(refs, &sb_path, refname);
1423
1424        path = sb_path.buf;
1425
1426stat_ref:
1427        /*
1428         * We might have to loop back here to avoid a race
1429         * condition: first we lstat() the file, then we try
1430         * to read it as a link or as a file.  But if somebody
1431         * changes the type of the file (file <-> directory
1432         * <-> symlink) between the lstat() and reading, then
1433         * we don't want to report that as an error but rather
1434         * try again starting with the lstat().
1435         *
1436         * We'll keep a count of the retries, though, just to avoid
1437         * any confusing situation sending us into an infinite loop.
1438         */
1439
1440        if (remaining_retries-- <= 0)
1441                goto out;
1442
1443        if (lstat(path, &st) < 0) {
1444                if (errno != ENOENT)
1445                        goto out;
1446                if (resolve_packed_ref(refs, refname, sha1, type)) {
1447                        errno = ENOENT;
1448                        goto out;
1449                }
1450                ret = 0;
1451                goto out;
1452        }
1453
1454        /* Follow "normalized" - ie "refs/.." symlinks by hand */
1455        if (S_ISLNK(st.st_mode)) {
1456                strbuf_reset(&sb_contents);
1457                if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1458                        if (errno == ENOENT || errno == EINVAL)
1459                                /* inconsistent with lstat; retry */
1460                                goto stat_ref;
1461                        else
1462                                goto out;
1463                }
1464                if (starts_with(sb_contents.buf, "refs/") &&
1465                    !check_refname_format(sb_contents.buf, 0)) {
1466                        strbuf_swap(&sb_contents, referent);
1467                        *type |= REF_ISSYMREF;
1468                        ret = 0;
1469                        goto out;
1470                }
1471                /*
1472                 * It doesn't look like a refname; fall through to just
1473                 * treating it like a non-symlink, and reading whatever it
1474                 * points to.
1475                 */
1476        }
1477
1478        /* Is it a directory? */
1479        if (S_ISDIR(st.st_mode)) {
1480                /*
1481                 * Even though there is a directory where the loose
1482                 * ref is supposed to be, there could still be a
1483                 * packed ref:
1484                 */
1485                if (resolve_packed_ref(refs, refname, sha1, type)) {
1486                        errno = EISDIR;
1487                        goto out;
1488                }
1489                ret = 0;
1490                goto out;
1491        }
1492
1493        /*
1494         * Anything else, just open it and try to use it as
1495         * a ref
1496         */
1497        fd = open(path, O_RDONLY);
1498        if (fd < 0) {
1499                if (errno == ENOENT && !S_ISLNK(st.st_mode))
1500                        /* inconsistent with lstat; retry */
1501                        goto stat_ref;
1502                else
1503                        goto out;
1504        }
1505        strbuf_reset(&sb_contents);
1506        if (strbuf_read(&sb_contents, fd, 256) < 0) {
1507                int save_errno = errno;
1508                close(fd);
1509                errno = save_errno;
1510                goto out;
1511        }
1512        close(fd);
1513        strbuf_rtrim(&sb_contents);
1514        buf = sb_contents.buf;
1515        if (starts_with(buf, "ref:")) {
1516                buf += 4;
1517                while (isspace(*buf))
1518                        buf++;
1519
1520                strbuf_reset(referent);
1521                strbuf_addstr(referent, buf);
1522                *type |= REF_ISSYMREF;
1523                ret = 0;
1524                goto out;
1525        }
1526
1527        /*
1528         * Please note that FETCH_HEAD has additional
1529         * data after the sha.
1530         */
1531        if (get_sha1_hex(buf, sha1) ||
1532            (buf[40] != '\0' && !isspace(buf[40]))) {
1533                *type |= REF_ISBROKEN;
1534                errno = EINVAL;
1535                goto out;
1536        }
1537
1538        ret = 0;
1539
1540out:
1541        save_errno = errno;
1542        strbuf_release(&sb_path);
1543        strbuf_release(&sb_contents);
1544        errno = save_errno;
1545        return ret;
1546}
1547
1548static void unlock_ref(struct ref_lock *lock)
1549{
1550        /* Do not free lock->lk -- atexit() still looks at them */
1551        if (lock->lk)
1552                rollback_lock_file(lock->lk);
1553        free(lock->ref_name);
1554        free(lock);
1555}
1556
1557/*
1558 * Lock refname, without following symrefs, and set *lock_p to point
1559 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1560 * and type similarly to read_raw_ref().
1561 *
1562 * The caller must verify that refname is a "safe" reference name (in
1563 * the sense of refname_is_safe()) before calling this function.
1564 *
1565 * If the reference doesn't already exist, verify that refname doesn't
1566 * have a D/F conflict with any existing references. extras and skip
1567 * are passed to verify_refname_available_dir() for this check.
1568 *
1569 * If mustexist is not set and the reference is not found or is
1570 * broken, lock the reference anyway but clear sha1.
1571 *
1572 * Return 0 on success. On failure, write an error message to err and
1573 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1574 *
1575 * Implementation note: This function is basically
1576 *
1577 *     lock reference
1578 *     read_raw_ref()
1579 *
1580 * but it includes a lot more code to
1581 * - Deal with possible races with other processes
1582 * - Avoid calling verify_refname_available_dir() when it can be
1583 *   avoided, namely if we were successfully able to read the ref
1584 * - Generate informative error messages in the case of failure
1585 */
1586static int lock_raw_ref(struct files_ref_store *refs,
1587                        const char *refname, int mustexist,
1588                        const struct string_list *extras,
1589                        const struct string_list *skip,
1590                        struct ref_lock **lock_p,
1591                        struct strbuf *referent,
1592                        unsigned int *type,
1593                        struct strbuf *err)
1594{
1595        struct ref_lock *lock;
1596        struct strbuf ref_file = STRBUF_INIT;
1597        int attempts_remaining = 3;
1598        int ret = TRANSACTION_GENERIC_ERROR;
1599
1600        assert(err);
1601        files_assert_main_repository(refs, "lock_raw_ref");
1602
1603        *type = 0;
1604
1605        /* First lock the file so it can't change out from under us. */
1606
1607        *lock_p = lock = xcalloc(1, sizeof(*lock));
1608
1609        lock->ref_name = xstrdup(refname);
1610        files_ref_path(refs, &ref_file, refname);
1611
1612retry:
1613        switch (safe_create_leading_directories(ref_file.buf)) {
1614        case SCLD_OK:
1615                break; /* success */
1616        case SCLD_EXISTS:
1617                /*
1618                 * Suppose refname is "refs/foo/bar". We just failed
1619                 * to create the containing directory, "refs/foo",
1620                 * because there was a non-directory in the way. This
1621                 * indicates a D/F conflict, probably because of
1622                 * another reference such as "refs/foo". There is no
1623                 * reason to expect this error to be transitory.
1624                 */
1625                if (refs_verify_refname_available(&refs->base, refname,
1626                                                  extras, skip, err)) {
1627                        if (mustexist) {
1628                                /*
1629                                 * To the user the relevant error is
1630                                 * that the "mustexist" reference is
1631                                 * missing:
1632                                 */
1633                                strbuf_reset(err);
1634                                strbuf_addf(err, "unable to resolve reference '%s'",
1635                                            refname);
1636                        } else {
1637                                /*
1638                                 * The error message set by
1639                                 * verify_refname_available_dir() is OK.
1640                                 */
1641                                ret = TRANSACTION_NAME_CONFLICT;
1642                        }
1643                } else {
1644                        /*
1645                         * The file that is in the way isn't a loose
1646                         * reference. Report it as a low-level
1647                         * failure.
1648                         */
1649                        strbuf_addf(err, "unable to create lock file %s.lock; "
1650                                    "non-directory in the way",
1651                                    ref_file.buf);
1652                }
1653                goto error_return;
1654        case SCLD_VANISHED:
1655                /* Maybe another process was tidying up. Try again. */
1656                if (--attempts_remaining > 0)
1657                        goto retry;
1658                /* fall through */
1659        default:
1660                strbuf_addf(err, "unable to create directory for %s",
1661                            ref_file.buf);
1662                goto error_return;
1663        }
1664
1665        if (!lock->lk)
1666                lock->lk = xcalloc(1, sizeof(struct lock_file));
1667
1668        if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1669                if (errno == ENOENT && --attempts_remaining > 0) {
1670                        /*
1671                         * Maybe somebody just deleted one of the
1672                         * directories leading to ref_file.  Try
1673                         * again:
1674                         */
1675                        goto retry;
1676                } else {
1677                        unable_to_lock_message(ref_file.buf, errno, err);
1678                        goto error_return;
1679                }
1680        }
1681
1682        /*
1683         * Now we hold the lock and can read the reference without
1684         * fear that its value will change.
1685         */
1686
1687        if (files_read_raw_ref(&refs->base, refname,
1688                               lock->old_oid.hash, referent, type)) {
1689                if (errno == ENOENT) {
1690                        if (mustexist) {
1691                                /* Garden variety missing reference. */
1692                                strbuf_addf(err, "unable to resolve reference '%s'",
1693                                            refname);
1694                                goto error_return;
1695                        } else {
1696                                /*
1697                                 * Reference is missing, but that's OK. We
1698                                 * know that there is not a conflict with
1699                                 * another loose reference because
1700                                 * (supposing that we are trying to lock
1701                                 * reference "refs/foo/bar"):
1702                                 *
1703                                 * - We were successfully able to create
1704                                 *   the lockfile refs/foo/bar.lock, so we
1705                                 *   know there cannot be a loose reference
1706                                 *   named "refs/foo".
1707                                 *
1708                                 * - We got ENOENT and not EISDIR, so we
1709                                 *   know that there cannot be a loose
1710                                 *   reference named "refs/foo/bar/baz".
1711                                 */
1712                        }
1713                } else if (errno == EISDIR) {
1714                        /*
1715                         * There is a directory in the way. It might have
1716                         * contained references that have been deleted. If
1717                         * we don't require that the reference already
1718                         * exists, try to remove the directory so that it
1719                         * doesn't cause trouble when we want to rename the
1720                         * lockfile into place later.
1721                         */
1722                        if (mustexist) {
1723                                /* Garden variety missing reference. */
1724                                strbuf_addf(err, "unable to resolve reference '%s'",
1725                                            refname);
1726                                goto error_return;
1727                        } else if (remove_dir_recursively(&ref_file,
1728                                                          REMOVE_DIR_EMPTY_ONLY)) {
1729                                if (verify_refname_available_dir(
1730                                                    refname, extras, skip,
1731                                                    get_loose_refs(refs),
1732                                                    err)) {
1733                                        /*
1734                                         * The error message set by
1735                                         * verify_refname_available() is OK.
1736                                         */
1737                                        ret = TRANSACTION_NAME_CONFLICT;
1738                                        goto error_return;
1739                                } else {
1740                                        /*
1741                                         * We can't delete the directory,
1742                                         * but we also don't know of any
1743                                         * references that it should
1744                                         * contain.
1745                                         */
1746                                        strbuf_addf(err, "there is a non-empty directory '%s' "
1747                                                    "blocking reference '%s'",
1748                                                    ref_file.buf, refname);
1749                                        goto error_return;
1750                                }
1751                        }
1752                } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1753                        strbuf_addf(err, "unable to resolve reference '%s': "
1754                                    "reference broken", refname);
1755                        goto error_return;
1756                } else {
1757                        strbuf_addf(err, "unable to resolve reference '%s': %s",
1758                                    refname, strerror(errno));
1759                        goto error_return;
1760                }
1761
1762                /*
1763                 * If the ref did not exist and we are creating it,
1764                 * make sure there is no existing packed ref whose
1765                 * name begins with our refname, nor a packed ref
1766                 * whose name is a proper prefix of our refname.
1767                 */
1768                if (verify_refname_available_dir(
1769                                    refname, extras, skip,
1770                                    get_packed_refs(refs),
1771                                    err)) {
1772                        goto error_return;
1773                }
1774        }
1775
1776        ret = 0;
1777        goto out;
1778
1779error_return:
1780        unlock_ref(lock);
1781        *lock_p = NULL;
1782
1783out:
1784        strbuf_release(&ref_file);
1785        return ret;
1786}
1787
1788/*
1789 * Peel the entry (if possible) and return its new peel_status.  If
1790 * repeel is true, re-peel the entry even if there is an old peeled
1791 * value that is already stored in it.
1792 *
1793 * It is OK to call this function with a packed reference entry that
1794 * might be stale and might even refer to an object that has since
1795 * been garbage-collected.  In such a case, if the entry has
1796 * REF_KNOWS_PEELED then leave the status unchanged and return
1797 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1798 */
1799static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1800{
1801        enum peel_status status;
1802
1803        if (entry->flag & REF_KNOWS_PEELED) {
1804                if (repeel) {
1805                        entry->flag &= ~REF_KNOWS_PEELED;
1806                        oidclr(&entry->u.value.peeled);
1807                } else {
1808                        return is_null_oid(&entry->u.value.peeled) ?
1809                                PEEL_NON_TAG : PEEL_PEELED;
1810                }
1811        }
1812        if (entry->flag & REF_ISBROKEN)
1813                return PEEL_BROKEN;
1814        if (entry->flag & REF_ISSYMREF)
1815                return PEEL_IS_SYMREF;
1816
1817        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1818        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1819                entry->flag |= REF_KNOWS_PEELED;
1820        return status;
1821}
1822
1823static int files_peel_ref(struct ref_store *ref_store,
1824                          const char *refname, unsigned char *sha1)
1825{
1826        struct files_ref_store *refs =
1827                files_downcast(ref_store, REF_STORE_READ | REF_STORE_ODB,
1828                               "peel_ref");
1829        int flag;
1830        unsigned char base[20];
1831
1832        files_assert_main_repository(refs, "peel_ref");
1833
1834        if (current_ref_iter && current_ref_iter->refname == refname) {
1835                struct object_id peeled;
1836
1837                if (ref_iterator_peel(current_ref_iter, &peeled))
1838                        return -1;
1839                hashcpy(sha1, peeled.hash);
1840                return 0;
1841        }
1842
1843        if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1844                return -1;
1845
1846        /*
1847         * If the reference is packed, read its ref_entry from the
1848         * cache in the hope that we already know its peeled value.
1849         * We only try this optimization on packed references because
1850         * (a) forcing the filling of the loose reference cache could
1851         * be expensive and (b) loose references anyway usually do not
1852         * have REF_KNOWS_PEELED.
1853         */
1854        if (flag & REF_ISPACKED) {
1855                struct ref_entry *r = get_packed_ref(refs, refname);
1856                if (r) {
1857                        if (peel_entry(r, 0))
1858                                return -1;
1859                        hashcpy(sha1, r->u.value.peeled.hash);
1860                        return 0;
1861                }
1862        }
1863
1864        return peel_object(base, sha1);
1865}
1866
1867struct files_ref_iterator {
1868        struct ref_iterator base;
1869
1870        struct packed_ref_cache *packed_ref_cache;
1871        struct ref_iterator *iter0;
1872        unsigned int flags;
1873};
1874
1875static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1876{
1877        struct files_ref_iterator *iter =
1878                (struct files_ref_iterator *)ref_iterator;
1879        int ok;
1880
1881        while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1882                if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1883                    ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1884                        continue;
1885
1886                if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1887                    !ref_resolves_to_object(iter->iter0->refname,
1888                                            iter->iter0->oid,
1889                                            iter->iter0->flags))
1890                        continue;
1891
1892                iter->base.refname = iter->iter0->refname;
1893                iter->base.oid = iter->iter0->oid;
1894                iter->base.flags = iter->iter0->flags;
1895                return ITER_OK;
1896        }
1897
1898        iter->iter0 = NULL;
1899        if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1900                ok = ITER_ERROR;
1901
1902        return ok;
1903}
1904
1905static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1906                                   struct object_id *peeled)
1907{
1908        struct files_ref_iterator *iter =
1909                (struct files_ref_iterator *)ref_iterator;
1910
1911        return ref_iterator_peel(iter->iter0, peeled);
1912}
1913
1914static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1915{
1916        struct files_ref_iterator *iter =
1917                (struct files_ref_iterator *)ref_iterator;
1918        int ok = ITER_DONE;
1919
1920        if (iter->iter0)
1921                ok = ref_iterator_abort(iter->iter0);
1922
1923        release_packed_ref_cache(iter->packed_ref_cache);
1924        base_ref_iterator_free(ref_iterator);
1925        return ok;
1926}
1927
1928static struct ref_iterator_vtable files_ref_iterator_vtable = {
1929        files_ref_iterator_advance,
1930        files_ref_iterator_peel,
1931        files_ref_iterator_abort
1932};
1933
1934static struct ref_iterator *files_ref_iterator_begin(
1935                struct ref_store *ref_store,
1936                const char *prefix, unsigned int flags)
1937{
1938        struct files_ref_store *refs;
1939        struct ref_dir *loose_dir, *packed_dir;
1940        struct ref_iterator *loose_iter, *packed_iter;
1941        struct files_ref_iterator *iter;
1942        struct ref_iterator *ref_iterator;
1943
1944        if (ref_paranoia < 0)
1945                ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1946        if (ref_paranoia)
1947                flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1948
1949        refs = files_downcast(ref_store,
1950                              REF_STORE_READ | (ref_paranoia ? 0 : REF_STORE_ODB),
1951                              "ref_iterator_begin");
1952
1953        iter = xcalloc(1, sizeof(*iter));
1954        ref_iterator = &iter->base;
1955        base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1956
1957        /*
1958         * We must make sure that all loose refs are read before
1959         * accessing the packed-refs file; this avoids a race
1960         * condition if loose refs are migrated to the packed-refs
1961         * file by a simultaneous process, but our in-memory view is
1962         * from before the migration. We ensure this as follows:
1963         * First, we call prime_ref_dir(), which pre-reads the loose
1964         * references for the subtree into the cache. (If they've
1965         * already been read, that's OK; we only need to guarantee
1966         * that they're read before the packed refs, not *how much*
1967         * before.) After that, we call get_packed_ref_cache(), which
1968         * internally checks whether the packed-ref cache is up to
1969         * date with what is on disk, and re-reads it if not.
1970         */
1971
1972        loose_dir = get_loose_refs(refs);
1973
1974        if (prefix && *prefix)
1975                loose_dir = find_containing_dir(loose_dir, prefix, 0);
1976
1977        if (loose_dir) {
1978                prime_ref_dir(loose_dir);
1979                loose_iter = cache_ref_iterator_begin(loose_dir);
1980        } else {
1981                /* There's nothing to iterate over. */
1982                loose_iter = empty_ref_iterator_begin();
1983        }
1984
1985        iter->packed_ref_cache = get_packed_ref_cache(refs);
1986        acquire_packed_ref_cache(iter->packed_ref_cache);
1987        packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1988
1989        if (prefix && *prefix)
1990                packed_dir = find_containing_dir(packed_dir, prefix, 0);
1991
1992        if (packed_dir) {
1993                packed_iter = cache_ref_iterator_begin(packed_dir);
1994        } else {
1995                /* There's nothing to iterate over. */
1996                packed_iter = empty_ref_iterator_begin();
1997        }
1998
1999        iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
2000        iter->flags = flags;
2001
2002        return ref_iterator;
2003}
2004
2005/*
2006 * Verify that the reference locked by lock has the value old_sha1.
2007 * Fail if the reference doesn't exist and mustexist is set. Return 0
2008 * on success. On error, write an error message to err, set errno, and
2009 * return a negative value.
2010 */
2011static int verify_lock(struct ref_lock *lock,
2012                       const unsigned char *old_sha1, int mustexist,
2013                       struct strbuf *err)
2014{
2015        assert(err);
2016
2017        if (read_ref_full(lock->ref_name,
2018                          mustexist ? RESOLVE_REF_READING : 0,
2019                          lock->old_oid.hash, NULL)) {
2020                if (old_sha1) {
2021                        int save_errno = errno;
2022                        strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
2023                        errno = save_errno;
2024                        return -1;
2025                } else {
2026                        oidclr(&lock->old_oid);
2027                        return 0;
2028                }
2029        }
2030        if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2031                strbuf_addf(err, "ref '%s' is at %s but expected %s",
2032                            lock->ref_name,
2033                            oid_to_hex(&lock->old_oid),
2034                            sha1_to_hex(old_sha1));
2035                errno = EBUSY;
2036                return -1;
2037        }
2038        return 0;
2039}
2040
2041static int remove_empty_directories(struct strbuf *path)
2042{
2043        /*
2044         * we want to create a file but there is a directory there;
2045         * if that is an empty directory (or a directory that contains
2046         * only empty directories), remove them.
2047         */
2048        return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2049}
2050
2051static int create_reflock(const char *path, void *cb)
2052{
2053        struct lock_file *lk = cb;
2054
2055        return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2056}
2057
2058/*
2059 * Locks a ref returning the lock on success and NULL on failure.
2060 * On failure errno is set to something meaningful.
2061 */
2062static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2063                                            const char *refname,
2064                                            const unsigned char *old_sha1,
2065                                            const struct string_list *extras,
2066                                            const struct string_list *skip,
2067                                            unsigned int flags, int *type,
2068                                            struct strbuf *err)
2069{
2070        struct strbuf ref_file = STRBUF_INIT;
2071        struct ref_lock *lock;
2072        int last_errno = 0;
2073        int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2074        int resolve_flags = RESOLVE_REF_NO_RECURSE;
2075        int resolved;
2076
2077        files_assert_main_repository(refs, "lock_ref_sha1_basic");
2078        assert(err);
2079
2080        lock = xcalloc(1, sizeof(struct ref_lock));
2081
2082        if (mustexist)
2083                resolve_flags |= RESOLVE_REF_READING;
2084        if (flags & REF_DELETING)
2085                resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2086
2087        files_ref_path(refs, &ref_file, refname);
2088        resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2089                                        lock->old_oid.hash, type);
2090        if (!resolved && errno == EISDIR) {
2091                /*
2092                 * we are trying to lock foo but we used to
2093                 * have foo/bar which now does not exist;
2094                 * it is normal for the empty directory 'foo'
2095                 * to remain.
2096                 */
2097                if (remove_empty_directories(&ref_file)) {
2098                        last_errno = errno;
2099                        if (!verify_refname_available_dir(
2100                                            refname, extras, skip,
2101                                            get_loose_refs(refs), err))
2102                                strbuf_addf(err, "there are still refs under '%s'",
2103                                            refname);
2104                        goto error_return;
2105                }
2106                resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2107                                                lock->old_oid.hash, type);
2108        }
2109        if (!resolved) {
2110                last_errno = errno;
2111                if (last_errno != ENOTDIR ||
2112                    !verify_refname_available_dir(
2113                                    refname, extras, skip,
2114                                    get_loose_refs(refs), err))
2115                        strbuf_addf(err, "unable to resolve reference '%s': %s",
2116                                    refname, strerror(last_errno));
2117
2118                goto error_return;
2119        }
2120
2121        /*
2122         * If the ref did not exist and we are creating it, make sure
2123         * there is no existing packed ref whose name begins with our
2124         * refname, nor a packed ref whose name is a proper prefix of
2125         * our refname.
2126         */
2127        if (is_null_oid(&lock->old_oid) &&
2128            verify_refname_available_dir(refname, extras, skip,
2129                                         get_packed_refs(refs),
2130                                         err)) {
2131                last_errno = ENOTDIR;
2132                goto error_return;
2133        }
2134
2135        lock->lk = xcalloc(1, sizeof(struct lock_file));
2136
2137        lock->ref_name = xstrdup(refname);
2138
2139        if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2140                last_errno = errno;
2141                unable_to_lock_message(ref_file.buf, errno, err);
2142                goto error_return;
2143        }
2144
2145        if (verify_lock(lock, old_sha1, mustexist, err)) {
2146                last_errno = errno;
2147                goto error_return;
2148        }
2149        goto out;
2150
2151 error_return:
2152        unlock_ref(lock);
2153        lock = NULL;
2154
2155 out:
2156        strbuf_release(&ref_file);
2157        errno = last_errno;
2158        return lock;
2159}
2160
2161/*
2162 * Write an entry to the packed-refs file for the specified refname.
2163 * If peeled is non-NULL, write it as the entry's peeled value.
2164 */
2165static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2166                               unsigned char *peeled)
2167{
2168        fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2169        if (peeled)
2170                fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2171}
2172
2173/*
2174 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2175 */
2176static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2177{
2178        enum peel_status peel_status = peel_entry(entry, 0);
2179
2180        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2181                error("internal error: %s is not a valid packed reference!",
2182                      entry->name);
2183        write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2184                           peel_status == PEEL_PEELED ?
2185                           entry->u.value.peeled.hash : NULL);
2186        return 0;
2187}
2188
2189/*
2190 * Lock the packed-refs file for writing. Flags is passed to
2191 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2192 * errno appropriately and return a nonzero value.
2193 */
2194static int lock_packed_refs(struct files_ref_store *refs, int flags)
2195{
2196        static int timeout_configured = 0;
2197        static int timeout_value = 1000;
2198        struct packed_ref_cache *packed_ref_cache;
2199
2200        files_assert_main_repository(refs, "lock_packed_refs");
2201
2202        if (!timeout_configured) {
2203                git_config_get_int("core.packedrefstimeout", &timeout_value);
2204                timeout_configured = 1;
2205        }
2206
2207        if (hold_lock_file_for_update_timeout(
2208                            &packlock, files_packed_refs_path(refs),
2209                            flags, timeout_value) < 0)
2210                return -1;
2211        /*
2212         * Get the current packed-refs while holding the lock.  If the
2213         * packed-refs file has been modified since we last read it,
2214         * this will automatically invalidate the cache and re-read
2215         * the packed-refs file.
2216         */
2217        packed_ref_cache = get_packed_ref_cache(refs);
2218        packed_ref_cache->lock = &packlock;
2219        /* Increment the reference count to prevent it from being freed: */
2220        acquire_packed_ref_cache(packed_ref_cache);
2221        return 0;
2222}
2223
2224/*
2225 * Write the current version of the packed refs cache from memory to
2226 * disk. The packed-refs file must already be locked for writing (see
2227 * lock_packed_refs()). Return zero on success. On errors, set errno
2228 * and return a nonzero value
2229 */
2230static int commit_packed_refs(struct files_ref_store *refs)
2231{
2232        struct packed_ref_cache *packed_ref_cache =
2233                get_packed_ref_cache(refs);
2234        int error = 0;
2235        int save_errno = 0;
2236        FILE *out;
2237
2238        files_assert_main_repository(refs, "commit_packed_refs");
2239
2240        if (!packed_ref_cache->lock)
2241                die("internal error: packed-refs not locked");
2242
2243        out = fdopen_lock_file(packed_ref_cache->lock, "w");
2244        if (!out)
2245                die_errno("unable to fdopen packed-refs descriptor");
2246
2247        fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2248        do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2249                                 0, write_packed_entry_fn, out);
2250
2251        if (commit_lock_file(packed_ref_cache->lock)) {
2252                save_errno = errno;
2253                error = -1;
2254        }
2255        packed_ref_cache->lock = NULL;
2256        release_packed_ref_cache(packed_ref_cache);
2257        errno = save_errno;
2258        return error;
2259}
2260
2261/*
2262 * Rollback the lockfile for the packed-refs file, and discard the
2263 * in-memory packed reference cache.  (The packed-refs file will be
2264 * read anew if it is needed again after this function is called.)
2265 */
2266static void rollback_packed_refs(struct files_ref_store *refs)
2267{
2268        struct packed_ref_cache *packed_ref_cache =
2269                get_packed_ref_cache(refs);
2270
2271        files_assert_main_repository(refs, "rollback_packed_refs");
2272
2273        if (!packed_ref_cache->lock)
2274                die("internal error: packed-refs not locked");
2275        rollback_lock_file(packed_ref_cache->lock);
2276        packed_ref_cache->lock = NULL;
2277        release_packed_ref_cache(packed_ref_cache);
2278        clear_packed_ref_cache(refs);
2279}
2280
2281struct ref_to_prune {
2282        struct ref_to_prune *next;
2283        unsigned char sha1[20];
2284        char name[FLEX_ARRAY];
2285};
2286
2287struct pack_refs_cb_data {
2288        unsigned int flags;
2289        struct ref_dir *packed_refs;
2290        struct ref_to_prune *ref_to_prune;
2291};
2292
2293/*
2294 * An each_ref_entry_fn that is run over loose references only.  If
2295 * the loose reference can be packed, add an entry in the packed ref
2296 * cache.  If the reference should be pruned, also add it to
2297 * ref_to_prune in the pack_refs_cb_data.
2298 */
2299static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2300{
2301        struct pack_refs_cb_data *cb = cb_data;
2302        enum peel_status peel_status;
2303        struct ref_entry *packed_entry;
2304        int is_tag_ref = starts_with(entry->name, "refs/tags/");
2305
2306        /* Do not pack per-worktree refs: */
2307        if (ref_type(entry->name) != REF_TYPE_NORMAL)
2308                return 0;
2309
2310        /* ALWAYS pack tags */
2311        if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2312                return 0;
2313
2314        /* Do not pack symbolic or broken refs: */
2315        if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2316                return 0;
2317
2318        /* Add a packed ref cache entry equivalent to the loose entry. */
2319        peel_status = peel_entry(entry, 1);
2320        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2321                die("internal error peeling reference %s (%s)",
2322                    entry->name, oid_to_hex(&entry->u.value.oid));
2323        packed_entry = find_ref(cb->packed_refs, entry->name);
2324        if (packed_entry) {
2325                /* Overwrite existing packed entry with info from loose entry */
2326                packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2327                oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2328        } else {
2329                packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2330                                                REF_ISPACKED | REF_KNOWS_PEELED, 0);
2331                add_ref(cb->packed_refs, packed_entry);
2332        }
2333        oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2334
2335        /* Schedule the loose reference for pruning if requested. */
2336        if ((cb->flags & PACK_REFS_PRUNE)) {
2337                struct ref_to_prune *n;
2338                FLEX_ALLOC_STR(n, name, entry->name);
2339                hashcpy(n->sha1, entry->u.value.oid.hash);
2340                n->next = cb->ref_to_prune;
2341                cb->ref_to_prune = n;
2342        }
2343        return 0;
2344}
2345
2346enum {
2347        REMOVE_EMPTY_PARENTS_REF = 0x01,
2348        REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2349};
2350
2351/*
2352 * Remove empty parent directories associated with the specified
2353 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2354 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2355 * REMOVE_EMPTY_PARENTS_REFLOG.
2356 */
2357static void try_remove_empty_parents(struct files_ref_store *refs,
2358                                     const char *refname,
2359                                     unsigned int flags)
2360{
2361        struct strbuf buf = STRBUF_INIT;
2362        struct strbuf sb = STRBUF_INIT;
2363        char *p, *q;
2364        int i;
2365
2366        strbuf_addstr(&buf, refname);
2367        p = buf.buf;
2368        for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2369                while (*p && *p != '/')
2370                        p++;
2371                /* tolerate duplicate slashes; see check_refname_format() */
2372                while (*p == '/')
2373                        p++;
2374        }
2375        q = buf.buf + buf.len;
2376        while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2377                while (q > p && *q != '/')
2378                        q--;
2379                while (q > p && *(q-1) == '/')
2380                        q--;
2381                if (q == p)
2382                        break;
2383                strbuf_setlen(&buf, q - buf.buf);
2384
2385                strbuf_reset(&sb);
2386                files_ref_path(refs, &sb, buf.buf);
2387                if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2388                        flags &= ~REMOVE_EMPTY_PARENTS_REF;
2389
2390                strbuf_reset(&sb);
2391                files_reflog_path(refs, &sb, buf.buf);
2392                if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2393                        flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2394        }
2395        strbuf_release(&buf);
2396        strbuf_release(&sb);
2397}
2398
2399/* make sure nobody touched the ref, and unlink */
2400static void prune_ref(struct ref_to_prune *r)
2401{
2402        struct ref_transaction *transaction;
2403        struct strbuf err = STRBUF_INIT;
2404
2405        if (check_refname_format(r->name, 0))
2406                return;
2407
2408        transaction = ref_transaction_begin(&err);
2409        if (!transaction ||
2410            ref_transaction_delete(transaction, r->name, r->sha1,
2411                                   REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2412            ref_transaction_commit(transaction, &err)) {
2413                ref_transaction_free(transaction);
2414                error("%s", err.buf);
2415                strbuf_release(&err);
2416                return;
2417        }
2418        ref_transaction_free(transaction);
2419        strbuf_release(&err);
2420}
2421
2422static void prune_refs(struct ref_to_prune *r)
2423{
2424        while (r) {
2425                prune_ref(r);
2426                r = r->next;
2427        }
2428}
2429
2430static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2431{
2432        struct files_ref_store *refs =
2433                files_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB,
2434                               "pack_refs");
2435        struct pack_refs_cb_data cbdata;
2436
2437        memset(&cbdata, 0, sizeof(cbdata));
2438        cbdata.flags = flags;
2439
2440        lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2441        cbdata.packed_refs = get_packed_refs(refs);
2442
2443        do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2444                                 pack_if_possible_fn, &cbdata);
2445
2446        if (commit_packed_refs(refs))
2447                die_errno("unable to overwrite old ref-pack file");
2448
2449        prune_refs(cbdata.ref_to_prune);
2450        return 0;
2451}
2452
2453/*
2454 * Rewrite the packed-refs file, omitting any refs listed in
2455 * 'refnames'. On error, leave packed-refs unchanged, write an error
2456 * message to 'err', and return a nonzero value.
2457 *
2458 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2459 */
2460static int repack_without_refs(struct files_ref_store *refs,
2461                               struct string_list *refnames, struct strbuf *err)
2462{
2463        struct ref_dir *packed;
2464        struct string_list_item *refname;
2465        int ret, needs_repacking = 0, removed = 0;
2466
2467        files_assert_main_repository(refs, "repack_without_refs");
2468        assert(err);
2469
2470        /* Look for a packed ref */
2471        for_each_string_list_item(refname, refnames) {
2472                if (get_packed_ref(refs, refname->string)) {
2473                        needs_repacking = 1;
2474                        break;
2475                }
2476        }
2477
2478        /* Avoid locking if we have nothing to do */
2479        if (!needs_repacking)
2480                return 0; /* no refname exists in packed refs */
2481
2482        if (lock_packed_refs(refs, 0)) {
2483                unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2484                return -1;
2485        }
2486        packed = get_packed_refs(refs);
2487
2488        /* Remove refnames from the cache */
2489        for_each_string_list_item(refname, refnames)
2490                if (remove_entry(packed, refname->string) != -1)
2491                        removed = 1;
2492        if (!removed) {
2493                /*
2494                 * All packed entries disappeared while we were
2495                 * acquiring the lock.
2496                 */
2497                rollback_packed_refs(refs);
2498                return 0;
2499        }
2500
2501        /* Write what remains */
2502        ret = commit_packed_refs(refs);
2503        if (ret)
2504                strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2505                            strerror(errno));
2506        return ret;
2507}
2508
2509static int files_delete_refs(struct ref_store *ref_store,
2510                             struct string_list *refnames, unsigned int flags)
2511{
2512        struct files_ref_store *refs =
2513                files_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
2514        struct strbuf err = STRBUF_INIT;
2515        int i, result = 0;
2516
2517        if (!refnames->nr)
2518                return 0;
2519
2520        result = repack_without_refs(refs, refnames, &err);
2521        if (result) {
2522                /*
2523                 * If we failed to rewrite the packed-refs file, then
2524                 * it is unsafe to try to remove loose refs, because
2525                 * doing so might expose an obsolete packed value for
2526                 * a reference that might even point at an object that
2527                 * has been garbage collected.
2528                 */
2529                if (refnames->nr == 1)
2530                        error(_("could not delete reference %s: %s"),
2531                              refnames->items[0].string, err.buf);
2532                else
2533                        error(_("could not delete references: %s"), err.buf);
2534
2535                goto out;
2536        }
2537
2538        for (i = 0; i < refnames->nr; i++) {
2539                const char *refname = refnames->items[i].string;
2540
2541                if (delete_ref(NULL, refname, NULL, flags))
2542                        result |= error(_("could not remove reference %s"), refname);
2543        }
2544
2545out:
2546        strbuf_release(&err);
2547        return result;
2548}
2549
2550/*
2551 * People using contrib's git-new-workdir have .git/logs/refs ->
2552 * /some/other/path/.git/logs/refs, and that may live on another device.
2553 *
2554 * IOW, to avoid cross device rename errors, the temporary renamed log must
2555 * live into logs/refs.
2556 */
2557#define TMP_RENAMED_LOG  "refs/.tmp-renamed-log"
2558
2559struct rename_cb {
2560        const char *tmp_renamed_log;
2561        int true_errno;
2562};
2563
2564static int rename_tmp_log_callback(const char *path, void *cb_data)
2565{
2566        struct rename_cb *cb = cb_data;
2567
2568        if (rename(cb->tmp_renamed_log, path)) {
2569                /*
2570                 * rename(a, b) when b is an existing directory ought
2571                 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2572                 * Sheesh. Record the true errno for error reporting,
2573                 * but report EISDIR to raceproof_create_file() so
2574                 * that it knows to retry.
2575                 */
2576                cb->true_errno = errno;
2577                if (errno == ENOTDIR)
2578                        errno = EISDIR;
2579                return -1;
2580        } else {
2581                return 0;
2582        }
2583}
2584
2585static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2586{
2587        struct strbuf path = STRBUF_INIT;
2588        struct strbuf tmp = STRBUF_INIT;
2589        struct rename_cb cb;
2590        int ret;
2591
2592        files_reflog_path(refs, &path, newrefname);
2593        files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2594        cb.tmp_renamed_log = tmp.buf;
2595        ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2596        if (ret) {
2597                if (errno == EISDIR)
2598                        error("directory not empty: %s", path.buf);
2599                else
2600                        error("unable to move logfile %s to %s: %s",
2601                              tmp.buf, path.buf,
2602                              strerror(cb.true_errno));
2603        }
2604
2605        strbuf_release(&path);
2606        strbuf_release(&tmp);
2607        return ret;
2608}
2609
2610static int files_verify_refname_available(struct ref_store *ref_store,
2611                                          const char *newname,
2612                                          const struct string_list *extras,
2613                                          const struct string_list *skip,
2614                                          struct strbuf *err)
2615{
2616        struct files_ref_store *refs =
2617                files_downcast(ref_store, REF_STORE_READ, "verify_refname_available");
2618        struct ref_dir *packed_refs = get_packed_refs(refs);
2619        struct ref_dir *loose_refs = get_loose_refs(refs);
2620
2621        if (verify_refname_available_dir(newname, extras, skip,
2622                                         packed_refs, err) ||
2623            verify_refname_available_dir(newname, extras, skip,
2624                                         loose_refs, err))
2625                return -1;
2626
2627        return 0;
2628}
2629
2630static int write_ref_to_lockfile(struct ref_lock *lock,
2631                                 const unsigned char *sha1, struct strbuf *err);
2632static int commit_ref_update(struct files_ref_store *refs,
2633                             struct ref_lock *lock,
2634                             const unsigned char *sha1, const char *logmsg,
2635                             struct strbuf *err);
2636
2637static int files_rename_ref(struct ref_store *ref_store,
2638                            const char *oldrefname, const char *newrefname,
2639                            const char *logmsg)
2640{
2641        struct files_ref_store *refs =
2642                files_downcast(ref_store, REF_STORE_WRITE, "rename_ref");
2643        unsigned char sha1[20], orig_sha1[20];
2644        int flag = 0, logmoved = 0;
2645        struct ref_lock *lock;
2646        struct stat loginfo;
2647        struct strbuf sb_oldref = STRBUF_INIT;
2648        struct strbuf sb_newref = STRBUF_INIT;
2649        struct strbuf tmp_renamed_log = STRBUF_INIT;
2650        int log, ret;
2651        struct strbuf err = STRBUF_INIT;
2652
2653        files_reflog_path(refs, &sb_oldref, oldrefname);
2654        files_reflog_path(refs, &sb_newref, newrefname);
2655        files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2656
2657        log = !lstat(sb_oldref.buf, &loginfo);
2658        if (log && S_ISLNK(loginfo.st_mode)) {
2659                ret = error("reflog for %s is a symlink", oldrefname);
2660                goto out;
2661        }
2662
2663        if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2664                                orig_sha1, &flag)) {
2665                ret = error("refname %s not found", oldrefname);
2666                goto out;
2667        }
2668
2669        if (flag & REF_ISSYMREF) {
2670                ret = error("refname %s is a symbolic ref, renaming it is not supported",
2671                            oldrefname);
2672                goto out;
2673        }
2674        if (!refs_rename_ref_available(&refs->base, oldrefname, newrefname)) {
2675                ret = 1;
2676                goto out;
2677        }
2678
2679        if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2680                ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2681                            oldrefname, strerror(errno));
2682                goto out;
2683        }
2684
2685        if (delete_ref(logmsg, oldrefname, orig_sha1, REF_NODEREF)) {
2686                error("unable to delete old %s", oldrefname);
2687                goto rollback;
2688        }
2689
2690        /*
2691         * Since we are doing a shallow lookup, sha1 is not the
2692         * correct value to pass to delete_ref as old_sha1. But that
2693         * doesn't matter, because an old_sha1 check wouldn't add to
2694         * the safety anyway; we want to delete the reference whatever
2695         * its current value.
2696         */
2697        if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2698                           sha1, NULL) &&
2699            delete_ref(NULL, newrefname, NULL, REF_NODEREF)) {
2700                if (errno == EISDIR) {
2701                        struct strbuf path = STRBUF_INIT;
2702                        int result;
2703
2704                        files_ref_path(refs, &path, newrefname);
2705                        result = remove_empty_directories(&path);
2706                        strbuf_release(&path);
2707
2708                        if (result) {
2709                                error("Directory not empty: %s", newrefname);
2710                                goto rollback;
2711                        }
2712                } else {
2713                        error("unable to delete existing %s", newrefname);
2714                        goto rollback;
2715                }
2716        }
2717
2718        if (log && rename_tmp_log(refs, newrefname))
2719                goto rollback;
2720
2721        logmoved = log;
2722
2723        lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2724                                   REF_NODEREF, NULL, &err);
2725        if (!lock) {
2726                error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2727                strbuf_release(&err);
2728                goto rollback;
2729        }
2730        hashcpy(lock->old_oid.hash, orig_sha1);
2731
2732        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2733            commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2734                error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2735                strbuf_release(&err);
2736                goto rollback;
2737        }
2738
2739        ret = 0;
2740        goto out;
2741
2742 rollback:
2743        lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2744                                   REF_NODEREF, NULL, &err);
2745        if (!lock) {
2746                error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2747                strbuf_release(&err);
2748                goto rollbacklog;
2749        }
2750
2751        flag = log_all_ref_updates;
2752        log_all_ref_updates = LOG_REFS_NONE;
2753        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2754            commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2755                error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2756                strbuf_release(&err);
2757        }
2758        log_all_ref_updates = flag;
2759
2760 rollbacklog:
2761        if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2762                error("unable to restore logfile %s from %s: %s",
2763                        oldrefname, newrefname, strerror(errno));
2764        if (!logmoved && log &&
2765            rename(tmp_renamed_log.buf, sb_oldref.buf))
2766                error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2767                        oldrefname, strerror(errno));
2768        ret = 1;
2769 out:
2770        strbuf_release(&sb_newref);
2771        strbuf_release(&sb_oldref);
2772        strbuf_release(&tmp_renamed_log);
2773
2774        return ret;
2775}
2776
2777static int close_ref(struct ref_lock *lock)
2778{
2779        if (close_lock_file(lock->lk))
2780                return -1;
2781        return 0;
2782}
2783
2784static int commit_ref(struct ref_lock *lock)
2785{
2786        char *path = get_locked_file_path(lock->lk);
2787        struct stat st;
2788
2789        if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2790                /*
2791                 * There is a directory at the path we want to rename
2792                 * the lockfile to. Hopefully it is empty; try to
2793                 * delete it.
2794                 */
2795                size_t len = strlen(path);
2796                struct strbuf sb_path = STRBUF_INIT;
2797
2798                strbuf_attach(&sb_path, path, len, len);
2799
2800                /*
2801                 * If this fails, commit_lock_file() will also fail
2802                 * and will report the problem.
2803                 */
2804                remove_empty_directories(&sb_path);
2805                strbuf_release(&sb_path);
2806        } else {
2807                free(path);
2808        }
2809
2810        if (commit_lock_file(lock->lk))
2811                return -1;
2812        return 0;
2813}
2814
2815static int open_or_create_logfile(const char *path, void *cb)
2816{
2817        int *fd = cb;
2818
2819        *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2820        return (*fd < 0) ? -1 : 0;
2821}
2822
2823/*
2824 * Create a reflog for a ref. If force_create = 0, only create the
2825 * reflog for certain refs (those for which should_autocreate_reflog
2826 * returns non-zero). Otherwise, create it regardless of the reference
2827 * name. If the logfile already existed or was created, return 0 and
2828 * set *logfd to the file descriptor opened for appending to the file.
2829 * If no logfile exists and we decided not to create one, return 0 and
2830 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2831 * return -1.
2832 */
2833static int log_ref_setup(struct files_ref_store *refs,
2834                         const char *refname, int force_create,
2835                         int *logfd, struct strbuf *err)
2836{
2837        struct strbuf logfile_sb = STRBUF_INIT;
2838        char *logfile;
2839
2840        files_reflog_path(refs, &logfile_sb, refname);
2841        logfile = strbuf_detach(&logfile_sb, NULL);
2842
2843        if (force_create || should_autocreate_reflog(refname)) {
2844                if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2845                        if (errno == ENOENT)
2846                                strbuf_addf(err, "unable to create directory for '%s': "
2847                                            "%s", logfile, strerror(errno));
2848                        else if (errno == EISDIR)
2849                                strbuf_addf(err, "there are still logs under '%s'",
2850                                            logfile);
2851                        else
2852                                strbuf_addf(err, "unable to append to '%s': %s",
2853                                            logfile, strerror(errno));
2854
2855                        goto error;
2856                }
2857        } else {
2858                *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2859                if (*logfd < 0) {
2860                        if (errno == ENOENT || errno == EISDIR) {
2861                                /*
2862                                 * The logfile doesn't already exist,
2863                                 * but that is not an error; it only
2864                                 * means that we won't write log
2865                                 * entries to it.
2866                                 */
2867                                ;
2868                        } else {
2869                                strbuf_addf(err, "unable to append to '%s': %s",
2870                                            logfile, strerror(errno));
2871                                goto error;
2872                        }
2873                }
2874        }
2875
2876        if (*logfd >= 0)
2877                adjust_shared_perm(logfile);
2878
2879        free(logfile);
2880        return 0;
2881
2882error:
2883        free(logfile);
2884        return -1;
2885}
2886
2887static int files_create_reflog(struct ref_store *ref_store,
2888                               const char *refname, int force_create,
2889                               struct strbuf *err)
2890{
2891        struct files_ref_store *refs =
2892                files_downcast(ref_store, REF_STORE_WRITE, "create_reflog");
2893        int fd;
2894
2895        if (log_ref_setup(refs, refname, force_create, &fd, err))
2896                return -1;
2897
2898        if (fd >= 0)
2899                close(fd);
2900
2901        return 0;
2902}
2903
2904static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2905                            const unsigned char *new_sha1,
2906                            const char *committer, const char *msg)
2907{
2908        int msglen, written;
2909        unsigned maxlen, len;
2910        char *logrec;
2911
2912        msglen = msg ? strlen(msg) : 0;
2913        maxlen = strlen(committer) + msglen + 100;
2914        logrec = xmalloc(maxlen);
2915        len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2916                        sha1_to_hex(old_sha1),
2917                        sha1_to_hex(new_sha1),
2918                        committer);
2919        if (msglen)
2920                len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2921
2922        written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2923        free(logrec);
2924        if (written != len)
2925                return -1;
2926
2927        return 0;
2928}
2929
2930static int files_log_ref_write(struct files_ref_store *refs,
2931                               const char *refname, const unsigned char *old_sha1,
2932                               const unsigned char *new_sha1, const char *msg,
2933                               int flags, struct strbuf *err)
2934{
2935        int logfd, result;
2936
2937        if (log_all_ref_updates == LOG_REFS_UNSET)
2938                log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2939
2940        result = log_ref_setup(refs, refname,
2941                               flags & REF_FORCE_CREATE_REFLOG,
2942                               &logfd, err);
2943
2944        if (result)
2945                return result;
2946
2947        if (logfd < 0)
2948                return 0;
2949        result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2950                                  git_committer_info(0), msg);
2951        if (result) {
2952                struct strbuf sb = STRBUF_INIT;
2953                int save_errno = errno;
2954
2955                files_reflog_path(refs, &sb, refname);
2956                strbuf_addf(err, "unable to append to '%s': %s",
2957                            sb.buf, strerror(save_errno));
2958                strbuf_release(&sb);
2959                close(logfd);
2960                return -1;
2961        }
2962        if (close(logfd)) {
2963                struct strbuf sb = STRBUF_INIT;
2964                int save_errno = errno;
2965
2966                files_reflog_path(refs, &sb, refname);
2967                strbuf_addf(err, "unable to append to '%s': %s",
2968                            sb.buf, strerror(save_errno));
2969                strbuf_release(&sb);
2970                return -1;
2971        }
2972        return 0;
2973}
2974
2975/*
2976 * Write sha1 into the open lockfile, then close the lockfile. On
2977 * errors, rollback the lockfile, fill in *err and
2978 * return -1.
2979 */
2980static int write_ref_to_lockfile(struct ref_lock *lock,
2981                                 const unsigned char *sha1, struct strbuf *err)
2982{
2983        static char term = '\n';
2984        struct object *o;
2985        int fd;
2986
2987        o = parse_object(sha1);
2988        if (!o) {
2989                strbuf_addf(err,
2990                            "trying to write ref '%s' with nonexistent object %s",
2991                            lock->ref_name, sha1_to_hex(sha1));
2992                unlock_ref(lock);
2993                return -1;
2994        }
2995        if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2996                strbuf_addf(err,
2997                            "trying to write non-commit object %s to branch '%s'",
2998                            sha1_to_hex(sha1), lock->ref_name);
2999                unlock_ref(lock);
3000                return -1;
3001        }
3002        fd = get_lock_file_fd(lock->lk);
3003        if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
3004            write_in_full(fd, &term, 1) != 1 ||
3005            close_ref(lock) < 0) {
3006                strbuf_addf(err,
3007                            "couldn't write '%s'", get_lock_file_path(lock->lk));
3008                unlock_ref(lock);
3009                return -1;
3010        }
3011        return 0;
3012}
3013
3014/*
3015 * Commit a change to a loose reference that has already been written
3016 * to the loose reference lockfile. Also update the reflogs if
3017 * necessary, using the specified lockmsg (which can be NULL).
3018 */
3019static int commit_ref_update(struct files_ref_store *refs,
3020                             struct ref_lock *lock,
3021                             const unsigned char *sha1, const char *logmsg,
3022                             struct strbuf *err)
3023{
3024        files_assert_main_repository(refs, "commit_ref_update");
3025
3026        clear_loose_ref_cache(refs);
3027        if (files_log_ref_write(refs, lock->ref_name,
3028                                lock->old_oid.hash, sha1,
3029                                logmsg, 0, err)) {
3030                char *old_msg = strbuf_detach(err, NULL);
3031                strbuf_addf(err, "cannot update the ref '%s': %s",
3032                            lock->ref_name, old_msg);
3033                free(old_msg);
3034                unlock_ref(lock);
3035                return -1;
3036        }
3037
3038        if (strcmp(lock->ref_name, "HEAD") != 0) {
3039                /*
3040                 * Special hack: If a branch is updated directly and HEAD
3041                 * points to it (may happen on the remote side of a push
3042                 * for example) then logically the HEAD reflog should be
3043                 * updated too.
3044                 * A generic solution implies reverse symref information,
3045                 * but finding all symrefs pointing to the given branch
3046                 * would be rather costly for this rare event (the direct
3047                 * update of a branch) to be worth it.  So let's cheat and
3048                 * check with HEAD only which should cover 99% of all usage
3049                 * scenarios (even 100% of the default ones).
3050                 */
3051                unsigned char head_sha1[20];
3052                int head_flag;
3053                const char *head_ref;
3054
3055                head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3056                                              head_sha1, &head_flag);
3057                if (head_ref && (head_flag & REF_ISSYMREF) &&
3058                    !strcmp(head_ref, lock->ref_name)) {
3059                        struct strbuf log_err = STRBUF_INIT;
3060                        if (files_log_ref_write(refs, "HEAD",
3061                                                lock->old_oid.hash, sha1,
3062                                                logmsg, 0, &log_err)) {
3063                                error("%s", log_err.buf);
3064                                strbuf_release(&log_err);
3065                        }
3066                }
3067        }
3068
3069        if (commit_ref(lock)) {
3070                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3071                unlock_ref(lock);
3072                return -1;
3073        }
3074
3075        unlock_ref(lock);
3076        return 0;
3077}
3078
3079static int create_ref_symlink(struct ref_lock *lock, const char *target)
3080{
3081        int ret = -1;
3082#ifndef NO_SYMLINK_HEAD
3083        char *ref_path = get_locked_file_path(lock->lk);
3084        unlink(ref_path);
3085        ret = symlink(target, ref_path);
3086        free(ref_path);
3087
3088        if (ret)
3089                fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3090#endif
3091        return ret;
3092}
3093
3094static void update_symref_reflog(struct files_ref_store *refs,
3095                                 struct ref_lock *lock, const char *refname,
3096                                 const char *target, const char *logmsg)
3097{
3098        struct strbuf err = STRBUF_INIT;
3099        unsigned char new_sha1[20];
3100        if (logmsg && !read_ref(target, new_sha1) &&
3101            files_log_ref_write(refs, refname, lock->old_oid.hash,
3102                                new_sha1, logmsg, 0, &err)) {
3103                error("%s", err.buf);
3104                strbuf_release(&err);
3105        }
3106}
3107
3108static int create_symref_locked(struct files_ref_store *refs,
3109                                struct ref_lock *lock, const char *refname,
3110                                const char *target, const char *logmsg)
3111{
3112        if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3113                update_symref_reflog(refs, lock, refname, target, logmsg);
3114                return 0;
3115        }
3116
3117        if (!fdopen_lock_file(lock->lk, "w"))
3118                return error("unable to fdopen %s: %s",
3119                             lock->lk->tempfile.filename.buf, strerror(errno));
3120
3121        update_symref_reflog(refs, lock, refname, target, logmsg);
3122
3123        /* no error check; commit_ref will check ferror */
3124        fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3125        if (commit_ref(lock) < 0)
3126                return error("unable to write symref for %s: %s", refname,
3127                             strerror(errno));
3128        return 0;
3129}
3130
3131static int files_create_symref(struct ref_store *ref_store,
3132                               const char *refname, const char *target,
3133                               const char *logmsg)
3134{
3135        struct files_ref_store *refs =
3136                files_downcast(ref_store, REF_STORE_WRITE, "create_symref");
3137        struct strbuf err = STRBUF_INIT;
3138        struct ref_lock *lock;
3139        int ret;
3140
3141        lock = lock_ref_sha1_basic(refs, refname, NULL,
3142                                   NULL, NULL, REF_NODEREF, NULL,
3143                                   &err);
3144        if (!lock) {
3145                error("%s", err.buf);
3146                strbuf_release(&err);
3147                return -1;
3148        }
3149
3150        ret = create_symref_locked(refs, lock, refname, target, logmsg);
3151        unlock_ref(lock);
3152        return ret;
3153}
3154
3155int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3156{
3157        /*
3158         * FIXME: this obviously will not work well for future refs
3159         * backends. This function needs to die.
3160         */
3161        struct files_ref_store *refs =
3162                files_downcast(get_main_ref_store(),
3163                               REF_STORE_WRITE,
3164                               "set_head_symref");
3165
3166        static struct lock_file head_lock;
3167        struct ref_lock *lock;
3168        struct strbuf head_path = STRBUF_INIT;
3169        const char *head_rel;
3170        int ret;
3171
3172        strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3173        if (hold_lock_file_for_update(&head_lock, head_path.buf,
3174                                      LOCK_NO_DEREF) < 0) {
3175                struct strbuf err = STRBUF_INIT;
3176                unable_to_lock_message(head_path.buf, errno, &err);
3177                error("%s", err.buf);
3178                strbuf_release(&err);
3179                strbuf_release(&head_path);
3180                return -1;
3181        }
3182
3183        /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3184           linked trees */
3185        head_rel = remove_leading_path(head_path.buf,
3186                                       absolute_path(get_git_common_dir()));
3187        /* to make use of create_symref_locked(), initialize ref_lock */
3188        lock = xcalloc(1, sizeof(struct ref_lock));
3189        lock->lk = &head_lock;
3190        lock->ref_name = xstrdup(head_rel);
3191
3192        ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3193
3194        unlock_ref(lock); /* will free lock */
3195        strbuf_release(&head_path);
3196        return ret;
3197}
3198
3199static int files_reflog_exists(struct ref_store *ref_store,
3200                               const char *refname)
3201{
3202        struct files_ref_store *refs =
3203                files_downcast(ref_store, REF_STORE_READ, "reflog_exists");
3204        struct strbuf sb = STRBUF_INIT;
3205        struct stat st;
3206        int ret;
3207
3208        files_reflog_path(refs, &sb, refname);
3209        ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3210        strbuf_release(&sb);
3211        return ret;
3212}
3213
3214static int files_delete_reflog(struct ref_store *ref_store,
3215                               const char *refname)
3216{
3217        struct files_ref_store *refs =
3218                files_downcast(ref_store, REF_STORE_WRITE, "delete_reflog");
3219        struct strbuf sb = STRBUF_INIT;
3220        int ret;
3221
3222        files_reflog_path(refs, &sb, refname);
3223        ret = remove_path(sb.buf);
3224        strbuf_release(&sb);
3225        return ret;
3226}
3227
3228static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3229{
3230        struct object_id ooid, noid;
3231        char *email_end, *message;
3232        unsigned long timestamp;
3233        int tz;
3234        const char *p = sb->buf;
3235
3236        /* old SP new SP name <email> SP time TAB msg LF */
3237        if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3238            parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3239            parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3240            !(email_end = strchr(p, '>')) ||
3241            email_end[1] != ' ' ||
3242            !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3243            !message || message[0] != ' ' ||
3244            (message[1] != '+' && message[1] != '-') ||
3245            !isdigit(message[2]) || !isdigit(message[3]) ||
3246            !isdigit(message[4]) || !isdigit(message[5]))
3247                return 0; /* corrupt? */
3248        email_end[1] = '\0';
3249        tz = strtol(message + 1, NULL, 10);
3250        if (message[6] != '\t')
3251                message += 6;
3252        else
3253                message += 7;
3254        return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3255}
3256
3257static char *find_beginning_of_line(char *bob, char *scan)
3258{
3259        while (bob < scan && *(--scan) != '\n')
3260                ; /* keep scanning backwards */
3261        /*
3262         * Return either beginning of the buffer, or LF at the end of
3263         * the previous line.
3264         */
3265        return scan;
3266}
3267
3268static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3269                                             const char *refname,
3270                                             each_reflog_ent_fn fn,
3271                                             void *cb_data)
3272{
3273        struct files_ref_store *refs =
3274                files_downcast(ref_store, REF_STORE_READ,
3275                               "for_each_reflog_ent_reverse");
3276        struct strbuf sb = STRBUF_INIT;
3277        FILE *logfp;
3278        long pos;
3279        int ret = 0, at_tail = 1;
3280
3281        files_reflog_path(refs, &sb, refname);
3282        logfp = fopen(sb.buf, "r");
3283        strbuf_release(&sb);
3284        if (!logfp)
3285                return -1;
3286
3287        /* Jump to the end */
3288        if (fseek(logfp, 0, SEEK_END) < 0)
3289                return error("cannot seek back reflog for %s: %s",
3290                             refname, strerror(errno));
3291        pos = ftell(logfp);
3292        while (!ret && 0 < pos) {
3293                int cnt;
3294                size_t nread;
3295                char buf[BUFSIZ];
3296                char *endp, *scanp;
3297
3298                /* Fill next block from the end */
3299                cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3300                if (fseek(logfp, pos - cnt, SEEK_SET))
3301                        return error("cannot seek back reflog for %s: %s",
3302                                     refname, strerror(errno));
3303                nread = fread(buf, cnt, 1, logfp);
3304                if (nread != 1)
3305                        return error("cannot read %d bytes from reflog for %s: %s",
3306                                     cnt, refname, strerror(errno));
3307                pos -= cnt;
3308
3309                scanp = endp = buf + cnt;
3310                if (at_tail && scanp[-1] == '\n')
3311                        /* Looking at the final LF at the end of the file */
3312                        scanp--;
3313                at_tail = 0;
3314
3315                while (buf < scanp) {
3316                        /*
3317                         * terminating LF of the previous line, or the beginning
3318                         * of the buffer.
3319                         */
3320                        char *bp;
3321
3322                        bp = find_beginning_of_line(buf, scanp);
3323
3324                        if (*bp == '\n') {
3325                                /*
3326                                 * The newline is the end of the previous line,
3327                                 * so we know we have complete line starting
3328                                 * at (bp + 1). Prefix it onto any prior data
3329                                 * we collected for the line and process it.
3330                                 */
3331                                strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3332                                scanp = bp;
3333                                endp = bp + 1;
3334                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3335                                strbuf_reset(&sb);
3336                                if (ret)
3337                                        break;
3338                        } else if (!pos) {
3339                                /*
3340                                 * We are at the start of the buffer, and the
3341                                 * start of the file; there is no previous
3342                                 * line, and we have everything for this one.
3343                                 * Process it, and we can end the loop.
3344                                 */
3345                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3346                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3347                                strbuf_reset(&sb);
3348                                break;
3349                        }
3350
3351                        if (bp == buf) {
3352                                /*
3353                                 * We are at the start of the buffer, and there
3354                                 * is more file to read backwards. Which means
3355                                 * we are in the middle of a line. Note that we
3356                                 * may get here even if *bp was a newline; that
3357                                 * just means we are at the exact end of the
3358                                 * previous line, rather than some spot in the
3359                                 * middle.
3360                                 *
3361                                 * Save away what we have to be combined with
3362                                 * the data from the next read.
3363                                 */
3364                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3365                                break;
3366                        }
3367                }
3368
3369        }
3370        if (!ret && sb.len)
3371                die("BUG: reverse reflog parser had leftover data");
3372
3373        fclose(logfp);
3374        strbuf_release(&sb);
3375        return ret;
3376}
3377
3378static int files_for_each_reflog_ent(struct ref_store *ref_store,
3379                                     const char *refname,
3380                                     each_reflog_ent_fn fn, void *cb_data)
3381{
3382        struct files_ref_store *refs =
3383                files_downcast(ref_store, REF_STORE_READ,
3384                               "for_each_reflog_ent");
3385        FILE *logfp;
3386        struct strbuf sb = STRBUF_INIT;
3387        int ret = 0;
3388
3389        files_reflog_path(refs, &sb, refname);
3390        logfp = fopen(sb.buf, "r");
3391        strbuf_release(&sb);
3392        if (!logfp)
3393                return -1;
3394
3395        while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3396                ret = show_one_reflog_ent(&sb, fn, cb_data);
3397        fclose(logfp);
3398        strbuf_release(&sb);
3399        return ret;
3400}
3401
3402struct files_reflog_iterator {
3403        struct ref_iterator base;
3404
3405        struct dir_iterator *dir_iterator;
3406        struct object_id oid;
3407};
3408
3409static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3410{
3411        struct files_reflog_iterator *iter =
3412                (struct files_reflog_iterator *)ref_iterator;
3413        struct dir_iterator *diter = iter->dir_iterator;
3414        int ok;
3415
3416        while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3417                int flags;
3418
3419                if (!S_ISREG(diter->st.st_mode))
3420                        continue;
3421                if (diter->basename[0] == '.')
3422                        continue;
3423                if (ends_with(diter->basename, ".lock"))
3424                        continue;
3425
3426                if (read_ref_full(diter->relative_path, 0,
3427                                  iter->oid.hash, &flags)) {
3428                        error("bad ref for %s", diter->path.buf);
3429                        continue;
3430                }
3431
3432                iter->base.refname = diter->relative_path;
3433                iter->base.oid = &iter->oid;
3434                iter->base.flags = flags;
3435                return ITER_OK;
3436        }
3437
3438        iter->dir_iterator = NULL;
3439        if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3440                ok = ITER_ERROR;
3441        return ok;
3442}
3443
3444static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3445                                   struct object_id *peeled)
3446{
3447        die("BUG: ref_iterator_peel() called for reflog_iterator");
3448}
3449
3450static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3451{
3452        struct files_reflog_iterator *iter =
3453                (struct files_reflog_iterator *)ref_iterator;
3454        int ok = ITER_DONE;
3455
3456        if (iter->dir_iterator)
3457                ok = dir_iterator_abort(iter->dir_iterator);
3458
3459        base_ref_iterator_free(ref_iterator);
3460        return ok;
3461}
3462
3463static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3464        files_reflog_iterator_advance,
3465        files_reflog_iterator_peel,
3466        files_reflog_iterator_abort
3467};
3468
3469static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3470{
3471        struct files_ref_store *refs =
3472                files_downcast(ref_store, REF_STORE_READ,
3473                               "reflog_iterator_begin");
3474        struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3475        struct ref_iterator *ref_iterator = &iter->base;
3476        struct strbuf sb = STRBUF_INIT;
3477
3478        base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3479        files_reflog_path(refs, &sb, NULL);
3480        iter->dir_iterator = dir_iterator_begin(sb.buf);
3481        strbuf_release(&sb);
3482        return ref_iterator;
3483}
3484
3485static int ref_update_reject_duplicates(struct string_list *refnames,
3486                                        struct strbuf *err)
3487{
3488        int i, n = refnames->nr;
3489
3490        assert(err);
3491
3492        for (i = 1; i < n; i++)
3493                if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3494                        strbuf_addf(err,
3495                                    "multiple updates for ref '%s' not allowed.",
3496                                    refnames->items[i].string);
3497                        return 1;
3498                }
3499        return 0;
3500}
3501
3502/*
3503 * If update is a direct update of head_ref (the reference pointed to
3504 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3505 */
3506static int split_head_update(struct ref_update *update,
3507                             struct ref_transaction *transaction,
3508                             const char *head_ref,
3509                             struct string_list *affected_refnames,
3510                             struct strbuf *err)
3511{
3512        struct string_list_item *item;
3513        struct ref_update *new_update;
3514
3515        if ((update->flags & REF_LOG_ONLY) ||
3516            (update->flags & REF_ISPRUNING) ||
3517            (update->flags & REF_UPDATE_VIA_HEAD))
3518                return 0;
3519
3520        if (strcmp(update->refname, head_ref))
3521                return 0;
3522
3523        /*
3524         * First make sure that HEAD is not already in the
3525         * transaction. This insertion is O(N) in the transaction
3526         * size, but it happens at most once per transaction.
3527         */
3528        item = string_list_insert(affected_refnames, "HEAD");
3529        if (item->util) {
3530                /* An entry already existed */
3531                strbuf_addf(err,
3532                            "multiple updates for 'HEAD' (including one "
3533                            "via its referent '%s') are not allowed",
3534                            update->refname);
3535                return TRANSACTION_NAME_CONFLICT;
3536        }
3537
3538        new_update = ref_transaction_add_update(
3539                        transaction, "HEAD",
3540                        update->flags | REF_LOG_ONLY | REF_NODEREF,
3541                        update->new_sha1, update->old_sha1,
3542                        update->msg);
3543
3544        item->util = new_update;
3545
3546        return 0;
3547}
3548
3549/*
3550 * update is for a symref that points at referent and doesn't have
3551 * REF_NODEREF set. Split it into two updates:
3552 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3553 * - A new, separate update for the referent reference
3554 * Note that the new update will itself be subject to splitting when
3555 * the iteration gets to it.
3556 */
3557static int split_symref_update(struct files_ref_store *refs,
3558                               struct ref_update *update,
3559                               const char *referent,
3560                               struct ref_transaction *transaction,
3561                               struct string_list *affected_refnames,
3562                               struct strbuf *err)
3563{
3564        struct string_list_item *item;
3565        struct ref_update *new_update;
3566        unsigned int new_flags;
3567
3568        /*
3569         * First make sure that referent is not already in the
3570         * transaction. This insertion is O(N) in the transaction
3571         * size, but it happens at most once per symref in a
3572         * transaction.
3573         */
3574        item = string_list_insert(affected_refnames, referent);
3575        if (item->util) {
3576                /* An entry already existed */
3577                strbuf_addf(err,
3578                            "multiple updates for '%s' (including one "
3579                            "via symref '%s') are not allowed",
3580                            referent, update->refname);
3581                return TRANSACTION_NAME_CONFLICT;
3582        }
3583
3584        new_flags = update->flags;
3585        if (!strcmp(update->refname, "HEAD")) {
3586                /*
3587                 * Record that the new update came via HEAD, so that
3588                 * when we process it, split_head_update() doesn't try
3589                 * to add another reflog update for HEAD. Note that
3590                 * this bit will be propagated if the new_update
3591                 * itself needs to be split.
3592                 */
3593                new_flags |= REF_UPDATE_VIA_HEAD;
3594        }
3595
3596        new_update = ref_transaction_add_update(
3597                        transaction, referent, new_flags,
3598                        update->new_sha1, update->old_sha1,
3599                        update->msg);
3600
3601        new_update->parent_update = update;
3602
3603        /*
3604         * Change the symbolic ref update to log only. Also, it
3605         * doesn't need to check its old SHA-1 value, as that will be
3606         * done when new_update is processed.
3607         */
3608        update->flags |= REF_LOG_ONLY | REF_NODEREF;
3609        update->flags &= ~REF_HAVE_OLD;
3610
3611        item->util = new_update;
3612
3613        return 0;
3614}
3615
3616/*
3617 * Return the refname under which update was originally requested.
3618 */
3619static const char *original_update_refname(struct ref_update *update)
3620{
3621        while (update->parent_update)
3622                update = update->parent_update;
3623
3624        return update->refname;
3625}
3626
3627/*
3628 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3629 * are consistent with oid, which is the reference's current value. If
3630 * everything is OK, return 0; otherwise, write an error message to
3631 * err and return -1.
3632 */
3633static int check_old_oid(struct ref_update *update, struct object_id *oid,
3634                         struct strbuf *err)
3635{
3636        if (!(update->flags & REF_HAVE_OLD) ||
3637                   !hashcmp(oid->hash, update->old_sha1))
3638                return 0;
3639
3640        if (is_null_sha1(update->old_sha1))
3641                strbuf_addf(err, "cannot lock ref '%s': "
3642                            "reference already exists",
3643                            original_update_refname(update));
3644        else if (is_null_oid(oid))
3645                strbuf_addf(err, "cannot lock ref '%s': "
3646                            "reference is missing but expected %s",
3647                            original_update_refname(update),
3648                            sha1_to_hex(update->old_sha1));
3649        else
3650                strbuf_addf(err, "cannot lock ref '%s': "
3651                            "is at %s but expected %s",
3652                            original_update_refname(update),
3653                            oid_to_hex(oid),
3654                            sha1_to_hex(update->old_sha1));
3655
3656        return -1;
3657}
3658
3659/*
3660 * Prepare for carrying out update:
3661 * - Lock the reference referred to by update.
3662 * - Read the reference under lock.
3663 * - Check that its old SHA-1 value (if specified) is correct, and in
3664 *   any case record it in update->lock->old_oid for later use when
3665 *   writing the reflog.
3666 * - If it is a symref update without REF_NODEREF, split it up into a
3667 *   REF_LOG_ONLY update of the symref and add a separate update for
3668 *   the referent to transaction.
3669 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3670 *   update of HEAD.
3671 */
3672static int lock_ref_for_update(struct files_ref_store *refs,
3673                               struct ref_update *update,
3674                               struct ref_transaction *transaction,
3675                               const char *head_ref,
3676                               struct string_list *affected_refnames,
3677                               struct strbuf *err)
3678{
3679        struct strbuf referent = STRBUF_INIT;
3680        int mustexist = (update->flags & REF_HAVE_OLD) &&
3681                !is_null_sha1(update->old_sha1);
3682        int ret;
3683        struct ref_lock *lock;
3684
3685        files_assert_main_repository(refs, "lock_ref_for_update");
3686
3687        if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3688                update->flags |= REF_DELETING;
3689
3690        if (head_ref) {
3691                ret = split_head_update(update, transaction, head_ref,
3692                                        affected_refnames, err);
3693                if (ret)
3694                        return ret;
3695        }
3696
3697        ret = lock_raw_ref(refs, update->refname, mustexist,
3698                           affected_refnames, NULL,
3699                           &lock, &referent,
3700                           &update->type, err);
3701        if (ret) {
3702                char *reason;
3703
3704                reason = strbuf_detach(err, NULL);
3705                strbuf_addf(err, "cannot lock ref '%s': %s",
3706                            original_update_refname(update), reason);
3707                free(reason);
3708                return ret;
3709        }
3710
3711        update->backend_data = lock;
3712
3713        if (update->type & REF_ISSYMREF) {
3714                if (update->flags & REF_NODEREF) {
3715                        /*
3716                         * We won't be reading the referent as part of
3717                         * the transaction, so we have to read it here
3718                         * to record and possibly check old_sha1:
3719                         */
3720                        if (read_ref_full(referent.buf, 0,
3721                                          lock->old_oid.hash, NULL)) {
3722                                if (update->flags & REF_HAVE_OLD) {
3723                                        strbuf_addf(err, "cannot lock ref '%s': "
3724                                                    "error reading reference",
3725                                                    original_update_refname(update));
3726                                        return -1;
3727                                }
3728                        } else if (check_old_oid(update, &lock->old_oid, err)) {
3729                                return TRANSACTION_GENERIC_ERROR;
3730                        }
3731                } else {
3732                        /*
3733                         * Create a new update for the reference this
3734                         * symref is pointing at. Also, we will record
3735                         * and verify old_sha1 for this update as part
3736                         * of processing the split-off update, so we
3737                         * don't have to do it here.
3738                         */
3739                        ret = split_symref_update(refs, update,
3740                                                  referent.buf, transaction,
3741                                                  affected_refnames, err);
3742                        if (ret)
3743                                return ret;
3744                }
3745        } else {
3746                struct ref_update *parent_update;
3747
3748                if (check_old_oid(update, &lock->old_oid, err))
3749                        return TRANSACTION_GENERIC_ERROR;
3750
3751                /*
3752                 * If this update is happening indirectly because of a
3753                 * symref update, record the old SHA-1 in the parent
3754                 * update:
3755                 */
3756                for (parent_update = update->parent_update;
3757                     parent_update;
3758                     parent_update = parent_update->parent_update) {
3759                        struct ref_lock *parent_lock = parent_update->backend_data;
3760                        oidcpy(&parent_lock->old_oid, &lock->old_oid);
3761                }
3762        }
3763
3764        if ((update->flags & REF_HAVE_NEW) &&
3765            !(update->flags & REF_DELETING) &&
3766            !(update->flags & REF_LOG_ONLY)) {
3767                if (!(update->type & REF_ISSYMREF) &&
3768                    !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3769                        /*
3770                         * The reference already has the desired
3771                         * value, so we don't need to write it.
3772                         */
3773                } else if (write_ref_to_lockfile(lock, update->new_sha1,
3774                                                 err)) {
3775                        char *write_err = strbuf_detach(err, NULL);
3776
3777                        /*
3778                         * The lock was freed upon failure of
3779                         * write_ref_to_lockfile():
3780                         */
3781                        update->backend_data = NULL;
3782                        strbuf_addf(err,
3783                                    "cannot update ref '%s': %s",
3784                                    update->refname, write_err);
3785                        free(write_err);
3786                        return TRANSACTION_GENERIC_ERROR;
3787                } else {
3788                        update->flags |= REF_NEEDS_COMMIT;
3789                }
3790        }
3791        if (!(update->flags & REF_NEEDS_COMMIT)) {
3792                /*
3793                 * We didn't call write_ref_to_lockfile(), so
3794                 * the lockfile is still open. Close it to
3795                 * free up the file descriptor:
3796                 */
3797                if (close_ref(lock)) {
3798                        strbuf_addf(err, "couldn't close '%s.lock'",
3799                                    update->refname);
3800                        return TRANSACTION_GENERIC_ERROR;
3801                }
3802        }
3803        return 0;
3804}
3805
3806static int files_transaction_commit(struct ref_store *ref_store,
3807                                    struct ref_transaction *transaction,
3808                                    struct strbuf *err)
3809{
3810        struct files_ref_store *refs =
3811                files_downcast(ref_store, REF_STORE_WRITE,
3812                               "ref_transaction_commit");
3813        int ret = 0, i;
3814        struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3815        struct string_list_item *ref_to_delete;
3816        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3817        char *head_ref = NULL;
3818        int head_type;
3819        struct object_id head_oid;
3820        struct strbuf sb = STRBUF_INIT;
3821
3822        assert(err);
3823
3824        if (transaction->state != REF_TRANSACTION_OPEN)
3825                die("BUG: commit called for transaction that is not open");
3826
3827        if (!transaction->nr) {
3828                transaction->state = REF_TRANSACTION_CLOSED;
3829                return 0;
3830        }
3831
3832        /*
3833         * Fail if a refname appears more than once in the
3834         * transaction. (If we end up splitting up any updates using
3835         * split_symref_update() or split_head_update(), those
3836         * functions will check that the new updates don't have the
3837         * same refname as any existing ones.)
3838         */
3839        for (i = 0; i < transaction->nr; i++) {
3840                struct ref_update *update = transaction->updates[i];
3841                struct string_list_item *item =
3842                        string_list_append(&affected_refnames, update->refname);
3843
3844                /*
3845                 * We store a pointer to update in item->util, but at
3846                 * the moment we never use the value of this field
3847                 * except to check whether it is non-NULL.
3848                 */
3849                item->util = update;
3850        }
3851        string_list_sort(&affected_refnames);
3852        if (ref_update_reject_duplicates(&affected_refnames, err)) {
3853                ret = TRANSACTION_GENERIC_ERROR;
3854                goto cleanup;
3855        }
3856
3857        /*
3858         * Special hack: If a branch is updated directly and HEAD
3859         * points to it (may happen on the remote side of a push
3860         * for example) then logically the HEAD reflog should be
3861         * updated too.
3862         *
3863         * A generic solution would require reverse symref lookups,
3864         * but finding all symrefs pointing to a given branch would be
3865         * rather costly for this rare event (the direct update of a
3866         * branch) to be worth it. So let's cheat and check with HEAD
3867         * only, which should cover 99% of all usage scenarios (even
3868         * 100% of the default ones).
3869         *
3870         * So if HEAD is a symbolic reference, then record the name of
3871         * the reference that it points to. If we see an update of
3872         * head_ref within the transaction, then split_head_update()
3873         * arranges for the reflog of HEAD to be updated, too.
3874         */
3875        head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3876                                  head_oid.hash, &head_type);
3877
3878        if (head_ref && !(head_type & REF_ISSYMREF)) {
3879                free(head_ref);
3880                head_ref = NULL;
3881        }
3882
3883        /*
3884         * Acquire all locks, verify old values if provided, check
3885         * that new values are valid, and write new values to the
3886         * lockfiles, ready to be activated. Only keep one lockfile
3887         * open at a time to avoid running out of file descriptors.
3888         */
3889        for (i = 0; i < transaction->nr; i++) {
3890                struct ref_update *update = transaction->updates[i];
3891
3892                ret = lock_ref_for_update(refs, update, transaction,
3893                                          head_ref, &affected_refnames, err);
3894                if (ret)
3895                        goto cleanup;
3896        }
3897
3898        /* Perform updates first so live commits remain referenced */
3899        for (i = 0; i < transaction->nr; i++) {
3900                struct ref_update *update = transaction->updates[i];
3901                struct ref_lock *lock = update->backend_data;
3902
3903                if (update->flags & REF_NEEDS_COMMIT ||
3904                    update->flags & REF_LOG_ONLY) {
3905                        if (files_log_ref_write(refs,
3906                                                lock->ref_name,
3907                                                lock->old_oid.hash,
3908                                                update->new_sha1,
3909                                                update->msg, update->flags,
3910                                                err)) {
3911                                char *old_msg = strbuf_detach(err, NULL);
3912
3913                                strbuf_addf(err, "cannot update the ref '%s': %s",
3914                                            lock->ref_name, old_msg);
3915                                free(old_msg);
3916                                unlock_ref(lock);
3917                                update->backend_data = NULL;
3918                                ret = TRANSACTION_GENERIC_ERROR;
3919                                goto cleanup;
3920                        }
3921                }
3922                if (update->flags & REF_NEEDS_COMMIT) {
3923                        clear_loose_ref_cache(refs);
3924                        if (commit_ref(lock)) {
3925                                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3926                                unlock_ref(lock);
3927                                update->backend_data = NULL;
3928                                ret = TRANSACTION_GENERIC_ERROR;
3929                                goto cleanup;
3930                        }
3931                }
3932        }
3933        /* Perform deletes now that updates are safely completed */
3934        for (i = 0; i < transaction->nr; i++) {
3935                struct ref_update *update = transaction->updates[i];
3936                struct ref_lock *lock = update->backend_data;
3937
3938                if (update->flags & REF_DELETING &&
3939                    !(update->flags & REF_LOG_ONLY)) {
3940                        if (!(update->type & REF_ISPACKED) ||
3941                            update->type & REF_ISSYMREF) {
3942                                /* It is a loose reference. */
3943                                strbuf_reset(&sb);
3944                                files_ref_path(refs, &sb, lock->ref_name);
3945                                if (unlink_or_msg(sb.buf, err)) {
3946                                        ret = TRANSACTION_GENERIC_ERROR;
3947                                        goto cleanup;
3948                                }
3949                                update->flags |= REF_DELETED_LOOSE;
3950                        }
3951
3952                        if (!(update->flags & REF_ISPRUNING))
3953                                string_list_append(&refs_to_delete,
3954                                                   lock->ref_name);
3955                }
3956        }
3957
3958        if (repack_without_refs(refs, &refs_to_delete, err)) {
3959                ret = TRANSACTION_GENERIC_ERROR;
3960                goto cleanup;
3961        }
3962
3963        /* Delete the reflogs of any references that were deleted: */
3964        for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3965                strbuf_reset(&sb);
3966                files_reflog_path(refs, &sb, ref_to_delete->string);
3967                if (!unlink_or_warn(sb.buf))
3968                        try_remove_empty_parents(refs, ref_to_delete->string,
3969                                                 REMOVE_EMPTY_PARENTS_REFLOG);
3970        }
3971
3972        clear_loose_ref_cache(refs);
3973
3974cleanup:
3975        strbuf_release(&sb);
3976        transaction->state = REF_TRANSACTION_CLOSED;
3977
3978        for (i = 0; i < transaction->nr; i++) {
3979                struct ref_update *update = transaction->updates[i];
3980                struct ref_lock *lock = update->backend_data;
3981
3982                if (lock)
3983                        unlock_ref(lock);
3984
3985                if (update->flags & REF_DELETED_LOOSE) {
3986                        /*
3987                         * The loose reference was deleted. Delete any
3988                         * empty parent directories. (Note that this
3989                         * can only work because we have already
3990                         * removed the lockfile.)
3991                         */
3992                        try_remove_empty_parents(refs, update->refname,
3993                                                 REMOVE_EMPTY_PARENTS_REF);
3994                }
3995        }
3996
3997        string_list_clear(&refs_to_delete, 0);
3998        free(head_ref);
3999        string_list_clear(&affected_refnames, 0);
4000
4001        return ret;
4002}
4003
4004static int ref_present(const char *refname,
4005                       const struct object_id *oid, int flags, void *cb_data)
4006{
4007        struct string_list *affected_refnames = cb_data;
4008
4009        return string_list_has_string(affected_refnames, refname);
4010}
4011
4012static int files_initial_transaction_commit(struct ref_store *ref_store,
4013                                            struct ref_transaction *transaction,
4014                                            struct strbuf *err)
4015{
4016        struct files_ref_store *refs =
4017                files_downcast(ref_store, REF_STORE_WRITE,
4018                               "initial_ref_transaction_commit");
4019        int ret = 0, i;
4020        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
4021
4022        assert(err);
4023
4024        if (transaction->state != REF_TRANSACTION_OPEN)
4025                die("BUG: commit called for transaction that is not open");
4026
4027        /* Fail if a refname appears more than once in the transaction: */
4028        for (i = 0; i < transaction->nr; i++)
4029                string_list_append(&affected_refnames,
4030                                   transaction->updates[i]->refname);
4031        string_list_sort(&affected_refnames);
4032        if (ref_update_reject_duplicates(&affected_refnames, err)) {
4033                ret = TRANSACTION_GENERIC_ERROR;
4034                goto cleanup;
4035        }
4036
4037        /*
4038         * It's really undefined to call this function in an active
4039         * repository or when there are existing references: we are
4040         * only locking and changing packed-refs, so (1) any
4041         * simultaneous processes might try to change a reference at
4042         * the same time we do, and (2) any existing loose versions of
4043         * the references that we are setting would have precedence
4044         * over our values. But some remote helpers create the remote
4045         * "HEAD" and "master" branches before calling this function,
4046         * so here we really only check that none of the references
4047         * that we are creating already exists.
4048         */
4049        if (for_each_rawref(ref_present, &affected_refnames))
4050                die("BUG: initial ref transaction called with existing refs");
4051
4052        for (i = 0; i < transaction->nr; i++) {
4053                struct ref_update *update = transaction->updates[i];
4054
4055                if ((update->flags & REF_HAVE_OLD) &&
4056                    !is_null_sha1(update->old_sha1))
4057                        die("BUG: initial ref transaction with old_sha1 set");
4058                if (refs_verify_refname_available(&refs->base, update->refname,
4059                                                  &affected_refnames, NULL,
4060                                                  err)) {
4061                        ret = TRANSACTION_NAME_CONFLICT;
4062                        goto cleanup;
4063                }
4064        }
4065
4066        if (lock_packed_refs(refs, 0)) {
4067                strbuf_addf(err, "unable to lock packed-refs file: %s",
4068                            strerror(errno));
4069                ret = TRANSACTION_GENERIC_ERROR;
4070                goto cleanup;
4071        }
4072
4073        for (i = 0; i < transaction->nr; i++) {
4074                struct ref_update *update = transaction->updates[i];
4075
4076                if ((update->flags & REF_HAVE_NEW) &&
4077                    !is_null_sha1(update->new_sha1))
4078                        add_packed_ref(refs, update->refname, update->new_sha1);
4079        }
4080
4081        if (commit_packed_refs(refs)) {
4082                strbuf_addf(err, "unable to commit packed-refs file: %s",
4083                            strerror(errno));
4084                ret = TRANSACTION_GENERIC_ERROR;
4085                goto cleanup;
4086        }
4087
4088cleanup:
4089        transaction->state = REF_TRANSACTION_CLOSED;
4090        string_list_clear(&affected_refnames, 0);
4091        return ret;
4092}
4093
4094struct expire_reflog_cb {
4095        unsigned int flags;
4096        reflog_expiry_should_prune_fn *should_prune_fn;
4097        void *policy_cb;
4098        FILE *newlog;
4099        struct object_id last_kept_oid;
4100};
4101
4102static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4103                             const char *email, unsigned long timestamp, int tz,
4104                             const char *message, void *cb_data)
4105{
4106        struct expire_reflog_cb *cb = cb_data;
4107        struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4108
4109        if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4110                ooid = &cb->last_kept_oid;
4111
4112        if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4113                                   message, policy_cb)) {
4114                if (!cb->newlog)
4115                        printf("would prune %s", message);
4116                else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4117                        printf("prune %s", message);
4118        } else {
4119                if (cb->newlog) {
4120                        fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4121                                oid_to_hex(ooid), oid_to_hex(noid),
4122                                email, timestamp, tz, message);
4123                        oidcpy(&cb->last_kept_oid, noid);
4124                }
4125                if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4126                        printf("keep %s", message);
4127        }
4128        return 0;
4129}
4130
4131static int files_reflog_expire(struct ref_store *ref_store,
4132                               const char *refname, const unsigned char *sha1,
4133                               unsigned int flags,
4134                               reflog_expiry_prepare_fn prepare_fn,
4135                               reflog_expiry_should_prune_fn should_prune_fn,
4136                               reflog_expiry_cleanup_fn cleanup_fn,
4137                               void *policy_cb_data)
4138{
4139        struct files_ref_store *refs =
4140                files_downcast(ref_store, REF_STORE_WRITE, "reflog_expire");
4141        static struct lock_file reflog_lock;
4142        struct expire_reflog_cb cb;
4143        struct ref_lock *lock;
4144        struct strbuf log_file_sb = STRBUF_INIT;
4145        char *log_file;
4146        int status = 0;
4147        int type;
4148        struct strbuf err = STRBUF_INIT;
4149
4150        memset(&cb, 0, sizeof(cb));
4151        cb.flags = flags;
4152        cb.policy_cb = policy_cb_data;
4153        cb.should_prune_fn = should_prune_fn;
4154
4155        /*
4156         * The reflog file is locked by holding the lock on the
4157         * reference itself, plus we might need to update the
4158         * reference if --updateref was specified:
4159         */
4160        lock = lock_ref_sha1_basic(refs, refname, sha1,
4161                                   NULL, NULL, REF_NODEREF,
4162                                   &type, &err);
4163        if (!lock) {
4164                error("cannot lock ref '%s': %s", refname, err.buf);
4165                strbuf_release(&err);
4166                return -1;
4167        }
4168        if (!reflog_exists(refname)) {
4169                unlock_ref(lock);
4170                return 0;
4171        }
4172
4173        files_reflog_path(refs, &log_file_sb, refname);
4174        log_file = strbuf_detach(&log_file_sb, NULL);
4175        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4176                /*
4177                 * Even though holding $GIT_DIR/logs/$reflog.lock has
4178                 * no locking implications, we use the lock_file
4179                 * machinery here anyway because it does a lot of the
4180                 * work we need, including cleaning up if the program
4181                 * exits unexpectedly.
4182                 */
4183                if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4184                        struct strbuf err = STRBUF_INIT;
4185                        unable_to_lock_message(log_file, errno, &err);
4186                        error("%s", err.buf);
4187                        strbuf_release(&err);
4188                        goto failure;
4189                }
4190                cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4191                if (!cb.newlog) {
4192                        error("cannot fdopen %s (%s)",
4193                              get_lock_file_path(&reflog_lock), strerror(errno));
4194                        goto failure;
4195                }
4196        }
4197
4198        (*prepare_fn)(refname, sha1, cb.policy_cb);
4199        for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4200        (*cleanup_fn)(cb.policy_cb);
4201
4202        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4203                /*
4204                 * It doesn't make sense to adjust a reference pointed
4205                 * to by a symbolic ref based on expiring entries in
4206                 * the symbolic reference's reflog. Nor can we update
4207                 * a reference if there are no remaining reflog
4208                 * entries.
4209                 */
4210                int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4211                        !(type & REF_ISSYMREF) &&
4212                        !is_null_oid(&cb.last_kept_oid);
4213
4214                if (close_lock_file(&reflog_lock)) {
4215                        status |= error("couldn't write %s: %s", log_file,
4216                                        strerror(errno));
4217                } else if (update &&
4218                           (write_in_full(get_lock_file_fd(lock->lk),
4219                                oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4220                            write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4221                            close_ref(lock) < 0)) {
4222                        status |= error("couldn't write %s",
4223                                        get_lock_file_path(lock->lk));
4224                        rollback_lock_file(&reflog_lock);
4225                } else if (commit_lock_file(&reflog_lock)) {
4226                        status |= error("unable to write reflog '%s' (%s)",
4227                                        log_file, strerror(errno));
4228                } else if (update && commit_ref(lock)) {
4229                        status |= error("couldn't set %s", lock->ref_name);
4230                }
4231        }
4232        free(log_file);
4233        unlock_ref(lock);
4234        return status;
4235
4236 failure:
4237        rollback_lock_file(&reflog_lock);
4238        free(log_file);
4239        unlock_ref(lock);
4240        return -1;
4241}
4242
4243static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4244{
4245        struct files_ref_store *refs =
4246                files_downcast(ref_store, REF_STORE_WRITE, "init_db");
4247        struct strbuf sb = STRBUF_INIT;
4248
4249        /*
4250         * Create .git/refs/{heads,tags}
4251         */
4252        files_ref_path(refs, &sb, "refs/heads");
4253        safe_create_dir(sb.buf, 1);
4254
4255        strbuf_reset(&sb);
4256        files_ref_path(refs, &sb, "refs/tags");
4257        safe_create_dir(sb.buf, 1);
4258
4259        strbuf_release(&sb);
4260        return 0;
4261}
4262
4263struct ref_storage_be refs_be_files = {
4264        NULL,
4265        "files",
4266        files_ref_store_create,
4267        files_init_db,
4268        files_transaction_commit,
4269        files_initial_transaction_commit,
4270
4271        files_pack_refs,
4272        files_peel_ref,
4273        files_create_symref,
4274        files_delete_refs,
4275        files_rename_ref,
4276
4277        files_ref_iterator_begin,
4278        files_read_raw_ref,
4279        files_verify_refname_available,
4280
4281        files_reflog_iterator_begin,
4282        files_for_each_reflog_ent,
4283        files_for_each_reflog_ent_reverse,
4284        files_reflog_exists,
4285        files_create_reflog,
4286        files_delete_reflog,
4287        files_reflog_expire
4288};