refs / refs-internal.hon commit refs: retry acquiring reference locks for 100ms (4ff0f01)
   1#ifndef REFS_REFS_INTERNAL_H
   2#define REFS_REFS_INTERNAL_H
   3
   4/*
   5 * Data structures and functions for the internal use of the refs
   6 * module. Code outside of the refs module should use only the public
   7 * functions defined in "refs.h", and should *not* include this file.
   8 */
   9
  10/*
  11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
  12 * refs (i.e., because the reference is about to be deleted anyway).
  13 */
  14#define REF_DELETING    0x02
  15
  16/*
  17 * Used as a flag in ref_update::flags when a loose ref is being
  18 * pruned. This flag must only be used when REF_NODEREF is set.
  19 */
  20#define REF_ISPRUNING   0x04
  21
  22/*
  23 * Used as a flag in ref_update::flags when the reference should be
  24 * updated to new_sha1.
  25 */
  26#define REF_HAVE_NEW    0x08
  27
  28/*
  29 * Used as a flag in ref_update::flags when old_sha1 should be
  30 * checked.
  31 */
  32#define REF_HAVE_OLD    0x10
  33
  34/*
  35 * Used as a flag in ref_update::flags when the lockfile needs to be
  36 * committed.
  37 */
  38#define REF_NEEDS_COMMIT 0x20
  39
  40/*
  41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
  42 * value to ref_update::flags
  43 */
  44
  45/*
  46 * Used as a flag in ref_update::flags when we want to log a ref
  47 * update but not actually perform it.  This is used when a symbolic
  48 * ref update is split up.
  49 */
  50#define REF_LOG_ONLY 0x80
  51
  52/*
  53 * Internal flag, meaning that the containing ref_update was via an
  54 * update to HEAD.
  55 */
  56#define REF_UPDATE_VIA_HEAD 0x100
  57
  58/*
  59 * Used as a flag in ref_update::flags when the loose reference has
  60 * been deleted.
  61 */
  62#define REF_DELETED_LOOSE 0x200
  63
  64/*
  65 * Return the length of time to retry acquiring a loose reference lock
  66 * before giving up, in milliseconds:
  67 */
  68long get_files_ref_lock_timeout_ms(void);
  69
  70/*
  71 * Return true iff refname is minimally safe. "Safe" here means that
  72 * deleting a loose reference by this name will not do any damage, for
  73 * example by causing a file that is not a reference to be deleted.
  74 * This function does not check that the reference name is legal; for
  75 * that, use check_refname_format().
  76 *
  77 * A refname that starts with "refs/" is considered safe iff it
  78 * doesn't contain any "." or ".." components or consecutive '/'
  79 * characters, end with '/', or (on Windows) contain any '\'
  80 * characters. Names that do not start with "refs/" are considered
  81 * safe iff they consist entirely of upper case characters and '_'
  82 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
  83 */
  84int refname_is_safe(const char *refname);
  85
  86enum peel_status {
  87        /* object was peeled successfully: */
  88        PEEL_PEELED = 0,
  89
  90        /*
  91         * object cannot be peeled because the named object (or an
  92         * object referred to by a tag in the peel chain), does not
  93         * exist.
  94         */
  95        PEEL_INVALID = -1,
  96
  97        /* object cannot be peeled because it is not a tag: */
  98        PEEL_NON_TAG = -2,
  99
 100        /* ref_entry contains no peeled value because it is a symref: */
 101        PEEL_IS_SYMREF = -3,
 102
 103        /*
 104         * ref_entry cannot be peeled because it is broken (i.e., the
 105         * symbolic reference cannot even be resolved to an object
 106         * name):
 107         */
 108        PEEL_BROKEN = -4
 109};
 110
 111/*
 112 * Peel the named object; i.e., if the object is a tag, resolve the
 113 * tag recursively until a non-tag is found.  If successful, store the
 114 * result to sha1 and return PEEL_PEELED.  If the object is not a tag
 115 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
 116 * and leave sha1 unchanged.
 117 */
 118enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
 119
 120/*
 121 * Copy the reflog message msg to buf, which has been allocated sufficiently
 122 * large, while cleaning up the whitespaces.  Especially, convert LF to space,
 123 * because reflog file is one line per entry.
 124 */
 125int copy_reflog_msg(char *buf, const char *msg);
 126
 127/**
 128 * Information needed for a single ref update. Set new_sha1 to the new
 129 * value or to null_sha1 to delete the ref. To check the old value
 130 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
 131 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
 132 * not exist before update.
 133 */
 134struct ref_update {
 135
 136        /*
 137         * If (flags & REF_HAVE_NEW), set the reference to this value:
 138         */
 139        struct object_id new_oid;
 140
 141        /*
 142         * If (flags & REF_HAVE_OLD), check that the reference
 143         * previously had this value:
 144         */
 145        struct object_id old_oid;
 146
 147        /*
 148         * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
 149         * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
 150         * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
 151         * REF_DELETED_LOOSE:
 152         */
 153        unsigned int flags;
 154
 155        void *backend_data;
 156        unsigned int type;
 157        char *msg;
 158
 159        /*
 160         * If this ref_update was split off of a symref update via
 161         * split_symref_update(), then this member points at that
 162         * update. This is used for two purposes:
 163         * 1. When reporting errors, we report the refname under which
 164         *    the update was originally requested.
 165         * 2. When we read the old value of this reference, we
 166         *    propagate it back to its parent update for recording in
 167         *    the latter's reflog.
 168         */
 169        struct ref_update *parent_update;
 170
 171        const char refname[FLEX_ARRAY];
 172};
 173
 174int refs_read_raw_ref(struct ref_store *ref_store,
 175                      const char *refname, unsigned char *sha1,
 176                      struct strbuf *referent, unsigned int *type);
 177
 178/*
 179 * Write an error to `err` and return a nonzero value iff the same
 180 * refname appears multiple times in `refnames`. `refnames` must be
 181 * sorted on entry to this function.
 182 */
 183int ref_update_reject_duplicates(struct string_list *refnames,
 184                                 struct strbuf *err);
 185
 186/*
 187 * Add a ref_update with the specified properties to transaction, and
 188 * return a pointer to the new object. This function does not verify
 189 * that refname is well-formed. new_sha1 and old_sha1 are only
 190 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
 191 * respectively, are set in flags.
 192 */
 193struct ref_update *ref_transaction_add_update(
 194                struct ref_transaction *transaction,
 195                const char *refname, unsigned int flags,
 196                const unsigned char *new_sha1,
 197                const unsigned char *old_sha1,
 198                const char *msg);
 199
 200/*
 201 * Transaction states.
 202 *
 203 * OPEN:   The transaction is initialized and new updates can still be
 204 *         added to it. An OPEN transaction can be prepared,
 205 *         committed, freed, or aborted (freeing and aborting an open
 206 *         transaction are equivalent).
 207 *
 208 * PREPARED: ref_transaction_prepare(), which locks all of the
 209 *         references involved in the update and checks that the
 210 *         update has no errors, has been called successfully for the
 211 *         transaction. A PREPARED transaction can be committed or
 212 *         aborted.
 213 *
 214 * CLOSED: The transaction is no longer active. A transaction becomes
 215 *         CLOSED if there is a failure while building the transaction
 216 *         or if a transaction is committed or aborted. A CLOSED
 217 *         transaction can only be freed.
 218 */
 219enum ref_transaction_state {
 220        REF_TRANSACTION_OPEN     = 0,
 221        REF_TRANSACTION_PREPARED = 1,
 222        REF_TRANSACTION_CLOSED   = 2
 223};
 224
 225/*
 226 * Data structure for holding a reference transaction, which can
 227 * consist of checks and updates to multiple references, carried out
 228 * as atomically as possible.  This structure is opaque to callers.
 229 */
 230struct ref_transaction {
 231        struct ref_store *ref_store;
 232        struct ref_update **updates;
 233        size_t alloc;
 234        size_t nr;
 235        enum ref_transaction_state state;
 236};
 237
 238/*
 239 * Check for entries in extras that are within the specified
 240 * directory, where dirname is a reference directory name including
 241 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
 242 * conflicting references that are found in skip. If there is a
 243 * conflicting reference, return its name.
 244 *
 245 * extras and skip must be sorted lists of reference names. Either one
 246 * can be NULL, signifying the empty list.
 247 */
 248const char *find_descendant_ref(const char *dirname,
 249                                const struct string_list *extras,
 250                                const struct string_list *skip);
 251
 252/*
 253 * Check whether an attempt to rename old_refname to new_refname would
 254 * cause a D/F conflict with any existing reference (other than
 255 * possibly old_refname). If there would be a conflict, emit an error
 256 * message and return false; otherwise, return true.
 257 *
 258 * Note that this function is not safe against all races with other
 259 * processes (though rename_ref() catches some races that might get by
 260 * this check).
 261 */
 262int refs_rename_ref_available(struct ref_store *refs,
 263                              const char *old_refname,
 264                              const char *new_refname);
 265
 266/* We allow "recursive" symbolic refs. Only within reason, though */
 267#define SYMREF_MAXDEPTH 5
 268
 269/* Include broken references in a do_for_each_ref*() iteration: */
 270#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
 271
 272/*
 273 * Reference iterators
 274 *
 275 * A reference iterator encapsulates the state of an in-progress
 276 * iteration over references. Create an instance of `struct
 277 * ref_iterator` via one of the functions in this module.
 278 *
 279 * A freshly-created ref_iterator doesn't yet point at a reference. To
 280 * advance the iterator, call ref_iterator_advance(). If successful,
 281 * this sets the iterator's refname, oid, and flags fields to describe
 282 * the next reference and returns ITER_OK. The data pointed at by
 283 * refname and oid belong to the iterator; if you want to retain them
 284 * after calling ref_iterator_advance() again or calling
 285 * ref_iterator_abort(), you must make a copy. When the iteration has
 286 * been exhausted, ref_iterator_advance() releases any resources
 287 * assocated with the iteration, frees the ref_iterator object, and
 288 * returns ITER_DONE. If you want to abort the iteration early, call
 289 * ref_iterator_abort(), which also frees the ref_iterator object and
 290 * any associated resources. If there was an internal error advancing
 291 * to the next entry, ref_iterator_advance() aborts the iteration,
 292 * frees the ref_iterator, and returns ITER_ERROR.
 293 *
 294 * The reference currently being looked at can be peeled by calling
 295 * ref_iterator_peel(). This function is often faster than peel_ref(),
 296 * so it should be preferred when iterating over references.
 297 *
 298 * Putting it all together, a typical iteration looks like this:
 299 *
 300 *     int ok;
 301 *     struct ref_iterator *iter = ...;
 302 *
 303 *     while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
 304 *             if (want_to_stop_iteration()) {
 305 *                     ok = ref_iterator_abort(iter);
 306 *                     break;
 307 *             }
 308 *
 309 *             // Access information about the current reference:
 310 *             if (!(iter->flags & REF_ISSYMREF))
 311 *                     printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
 312 *
 313 *             // If you need to peel the reference:
 314 *             ref_iterator_peel(iter, &oid);
 315 *     }
 316 *
 317 *     if (ok != ITER_DONE)
 318 *             handle_error();
 319 */
 320struct ref_iterator {
 321        struct ref_iterator_vtable *vtable;
 322        const char *refname;
 323        const struct object_id *oid;
 324        unsigned int flags;
 325};
 326
 327/*
 328 * Advance the iterator to the first or next item and return ITER_OK.
 329 * If the iteration is exhausted, free the resources associated with
 330 * the ref_iterator and return ITER_DONE. On errors, free the iterator
 331 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
 332 * call this function again after it has returned ITER_DONE or
 333 * ITER_ERROR.
 334 */
 335int ref_iterator_advance(struct ref_iterator *ref_iterator);
 336
 337/*
 338 * If possible, peel the reference currently being viewed by the
 339 * iterator. Return 0 on success.
 340 */
 341int ref_iterator_peel(struct ref_iterator *ref_iterator,
 342                      struct object_id *peeled);
 343
 344/*
 345 * End the iteration before it has been exhausted, freeing the
 346 * reference iterator and any associated resources and returning
 347 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
 348 */
 349int ref_iterator_abort(struct ref_iterator *ref_iterator);
 350
 351/*
 352 * An iterator over nothing (its first ref_iterator_advance() call
 353 * returns ITER_DONE).
 354 */
 355struct ref_iterator *empty_ref_iterator_begin(void);
 356
 357/*
 358 * Return true iff ref_iterator is an empty_ref_iterator.
 359 */
 360int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
 361
 362/*
 363 * Return an iterator that goes over each reference in `refs` for
 364 * which the refname begins with prefix. If trim is non-zero, then
 365 * trim that many characters off the beginning of each refname. flags
 366 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
 367 * the iteration.
 368 */
 369struct ref_iterator *refs_ref_iterator_begin(
 370                struct ref_store *refs,
 371                const char *prefix, int trim, int flags);
 372
 373/*
 374 * A callback function used to instruct merge_ref_iterator how to
 375 * interleave the entries from iter0 and iter1. The function should
 376 * return one of the constants defined in enum iterator_selection. It
 377 * must not advance either of the iterators itself.
 378 *
 379 * The function must be prepared to handle the case that iter0 and/or
 380 * iter1 is NULL, which indicates that the corresponding sub-iterator
 381 * has been exhausted. Its return value must be consistent with the
 382 * current states of the iterators; e.g., it must not return
 383 * ITER_SKIP_1 if iter1 has already been exhausted.
 384 */
 385typedef enum iterator_selection ref_iterator_select_fn(
 386                struct ref_iterator *iter0, struct ref_iterator *iter1,
 387                void *cb_data);
 388
 389/*
 390 * Iterate over the entries from iter0 and iter1, with the values
 391 * interleaved as directed by the select function. The iterator takes
 392 * ownership of iter0 and iter1 and frees them when the iteration is
 393 * over.
 394 */
 395struct ref_iterator *merge_ref_iterator_begin(
 396                struct ref_iterator *iter0, struct ref_iterator *iter1,
 397                ref_iterator_select_fn *select, void *cb_data);
 398
 399/*
 400 * An iterator consisting of the union of the entries from front and
 401 * back. If there are entries common to the two sub-iterators, use the
 402 * one from front. Each iterator must iterate over its entries in
 403 * strcmp() order by refname for this to work.
 404 *
 405 * The new iterator takes ownership of its arguments and frees them
 406 * when the iteration is over. As a convenience to callers, if front
 407 * or back is an empty_ref_iterator, then abort that one immediately
 408 * and return the other iterator directly, without wrapping it.
 409 */
 410struct ref_iterator *overlay_ref_iterator_begin(
 411                struct ref_iterator *front, struct ref_iterator *back);
 412
 413/*
 414 * Wrap iter0, only letting through the references whose names start
 415 * with prefix. If trim is set, set iter->refname to the name of the
 416 * reference with that many characters trimmed off the front;
 417 * otherwise set it to the full refname. The new iterator takes over
 418 * ownership of iter0 and frees it when iteration is over. It makes
 419 * its own copy of prefix.
 420 *
 421 * As an convenience to callers, if prefix is the empty string and
 422 * trim is zero, this function returns iter0 directly, without
 423 * wrapping it.
 424 */
 425struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
 426                                               const char *prefix,
 427                                               int trim);
 428
 429/* Internal implementation of reference iteration: */
 430
 431/*
 432 * Base class constructor for ref_iterators. Initialize the
 433 * ref_iterator part of iter, setting its vtable pointer as specified.
 434 * This is meant to be called only by the initializers of derived
 435 * classes.
 436 */
 437void base_ref_iterator_init(struct ref_iterator *iter,
 438                            struct ref_iterator_vtable *vtable);
 439
 440/*
 441 * Base class destructor for ref_iterators. Destroy the ref_iterator
 442 * part of iter and shallow-free the object. This is meant to be
 443 * called only by the destructors of derived classes.
 444 */
 445void base_ref_iterator_free(struct ref_iterator *iter);
 446
 447/* Virtual function declarations for ref_iterators: */
 448
 449typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
 450
 451typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
 452                                 struct object_id *peeled);
 453
 454/*
 455 * Implementations of this function should free any resources specific
 456 * to the derived class, then call base_ref_iterator_free() to clean
 457 * up and free the ref_iterator object.
 458 */
 459typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
 460
 461struct ref_iterator_vtable {
 462        ref_iterator_advance_fn *advance;
 463        ref_iterator_peel_fn *peel;
 464        ref_iterator_abort_fn *abort;
 465};
 466
 467/*
 468 * current_ref_iter is a performance hack: when iterating over
 469 * references using the for_each_ref*() functions, current_ref_iter is
 470 * set to the reference iterator before calling the callback function.
 471 * If the callback function calls peel_ref(), then peel_ref() first
 472 * checks whether the reference to be peeled is the one referred to by
 473 * the iterator (it usually is) and if so, asks the iterator for the
 474 * peeled version of the reference if it is available. This avoids a
 475 * refname lookup in a common case. current_ref_iter is set to NULL
 476 * when the iteration is over.
 477 */
 478extern struct ref_iterator *current_ref_iter;
 479
 480/*
 481 * The common backend for the for_each_*ref* functions. Call fn for
 482 * each reference in iter. If the iterator itself ever returns
 483 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
 484 * the iteration and return that value. Otherwise, return 0. In any
 485 * case, free the iterator when done. This function is basically an
 486 * adapter between the callback style of reference iteration and the
 487 * iterator style.
 488 */
 489int do_for_each_ref_iterator(struct ref_iterator *iter,
 490                             each_ref_fn fn, void *cb_data);
 491
 492/*
 493 * Only include per-worktree refs in a do_for_each_ref*() iteration.
 494 * Normally this will be used with a files ref_store, since that's
 495 * where all reference backends will presumably store their
 496 * per-worktree refs.
 497 */
 498#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
 499
 500struct ref_store;
 501
 502/* refs backends */
 503
 504/* ref_store_init flags */
 505#define REF_STORE_READ          (1 << 0)
 506#define REF_STORE_WRITE         (1 << 1) /* can perform update operations */
 507#define REF_STORE_ODB           (1 << 2) /* has access to object database */
 508#define REF_STORE_MAIN          (1 << 3)
 509#define REF_STORE_ALL_CAPS      (REF_STORE_READ | \
 510                                 REF_STORE_WRITE | \
 511                                 REF_STORE_ODB | \
 512                                 REF_STORE_MAIN)
 513
 514/*
 515 * Initialize the ref_store for the specified gitdir. These functions
 516 * should call base_ref_store_init() to initialize the shared part of
 517 * the ref_store and to record the ref_store for later lookup.
 518 */
 519typedef struct ref_store *ref_store_init_fn(const char *gitdir,
 520                                            unsigned int flags);
 521
 522typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
 523
 524typedef int ref_transaction_prepare_fn(struct ref_store *refs,
 525                                       struct ref_transaction *transaction,
 526                                       struct strbuf *err);
 527
 528typedef int ref_transaction_finish_fn(struct ref_store *refs,
 529                                      struct ref_transaction *transaction,
 530                                      struct strbuf *err);
 531
 532typedef int ref_transaction_abort_fn(struct ref_store *refs,
 533                                     struct ref_transaction *transaction,
 534                                     struct strbuf *err);
 535
 536typedef int ref_transaction_commit_fn(struct ref_store *refs,
 537                                      struct ref_transaction *transaction,
 538                                      struct strbuf *err);
 539
 540typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
 541typedef int peel_ref_fn(struct ref_store *ref_store,
 542                        const char *refname, unsigned char *sha1);
 543typedef int create_symref_fn(struct ref_store *ref_store,
 544                             const char *ref_target,
 545                             const char *refs_heads_master,
 546                             const char *logmsg);
 547typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
 548                           struct string_list *refnames, unsigned int flags);
 549typedef int rename_ref_fn(struct ref_store *ref_store,
 550                          const char *oldref, const char *newref,
 551                          const char *logmsg);
 552
 553/*
 554 * Iterate over the references in `ref_store` whose names start with
 555 * `prefix`. `prefix` is matched as a literal string, without regard
 556 * for path separators. If prefix is NULL or the empty string, iterate
 557 * over all references in `ref_store`.
 558 */
 559typedef struct ref_iterator *ref_iterator_begin_fn(
 560                struct ref_store *ref_store,
 561                const char *prefix, unsigned int flags);
 562
 563/* reflog functions */
 564
 565/*
 566 * Iterate over the references in the specified ref_store that have a
 567 * reflog. The refs are iterated over in arbitrary order.
 568 */
 569typedef struct ref_iterator *reflog_iterator_begin_fn(
 570                struct ref_store *ref_store);
 571
 572typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
 573                                   const char *refname,
 574                                   each_reflog_ent_fn fn,
 575                                   void *cb_data);
 576typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
 577                                           const char *refname,
 578                                           each_reflog_ent_fn fn,
 579                                           void *cb_data);
 580typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
 581typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
 582                             int force_create, struct strbuf *err);
 583typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
 584typedef int reflog_expire_fn(struct ref_store *ref_store,
 585                             const char *refname, const unsigned char *sha1,
 586                             unsigned int flags,
 587                             reflog_expiry_prepare_fn prepare_fn,
 588                             reflog_expiry_should_prune_fn should_prune_fn,
 589                             reflog_expiry_cleanup_fn cleanup_fn,
 590                             void *policy_cb_data);
 591
 592/*
 593 * Read a reference from the specified reference store, non-recursively.
 594 * Set type to describe the reference, and:
 595 *
 596 * - If refname is the name of a normal reference, fill in sha1
 597 *   (leaving referent unchanged).
 598 *
 599 * - If refname is the name of a symbolic reference, write the full
 600 *   name of the reference to which it refers (e.g.
 601 *   "refs/heads/master") to referent and set the REF_ISSYMREF bit in
 602 *   type (leaving sha1 unchanged). The caller is responsible for
 603 *   validating that referent is a valid reference name.
 604 *
 605 * WARNING: refname might be used as part of a filename, so it is
 606 * important from a security standpoint that it be safe in the sense
 607 * of refname_is_safe(). Moreover, for symrefs this function sets
 608 * referent to whatever the repository says, which might not be a
 609 * properly-formatted or even safe reference name. NEITHER INPUT NOR
 610 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
 611 *
 612 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
 613 * and return -1. If the ref exists but is neither a symbolic ref nor
 614 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
 615 * EINVAL, and return -1. If there is another error reading the ref,
 616 * set errno appropriately and return -1.
 617 *
 618 * Backend-specific flags might be set in type as well, regardless of
 619 * outcome.
 620 *
 621 * It is OK for refname to point into referent. If so:
 622 *
 623 * - if the function succeeds with REF_ISSYMREF, referent will be
 624 *   overwritten and the memory formerly pointed to by it might be
 625 *   changed or even freed.
 626 *
 627 * - in all other cases, referent will be untouched, and therefore
 628 *   refname will still be valid and unchanged.
 629 */
 630typedef int read_raw_ref_fn(struct ref_store *ref_store,
 631                            const char *refname, unsigned char *sha1,
 632                            struct strbuf *referent, unsigned int *type);
 633
 634struct ref_storage_be {
 635        struct ref_storage_be *next;
 636        const char *name;
 637        ref_store_init_fn *init;
 638        ref_init_db_fn *init_db;
 639
 640        ref_transaction_prepare_fn *transaction_prepare;
 641        ref_transaction_finish_fn *transaction_finish;
 642        ref_transaction_abort_fn *transaction_abort;
 643        ref_transaction_commit_fn *initial_transaction_commit;
 644
 645        pack_refs_fn *pack_refs;
 646        peel_ref_fn *peel_ref;
 647        create_symref_fn *create_symref;
 648        delete_refs_fn *delete_refs;
 649        rename_ref_fn *rename_ref;
 650
 651        ref_iterator_begin_fn *iterator_begin;
 652        read_raw_ref_fn *read_raw_ref;
 653
 654        reflog_iterator_begin_fn *reflog_iterator_begin;
 655        for_each_reflog_ent_fn *for_each_reflog_ent;
 656        for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
 657        reflog_exists_fn *reflog_exists;
 658        create_reflog_fn *create_reflog;
 659        delete_reflog_fn *delete_reflog;
 660        reflog_expire_fn *reflog_expire;
 661};
 662
 663extern struct ref_storage_be refs_be_files;
 664
 665/*
 666 * A representation of the reference store for the main repository or
 667 * a submodule. The ref_store instances for submodules are kept in a
 668 * linked list.
 669 */
 670struct ref_store {
 671        /* The backend describing this ref_store's storage scheme: */
 672        const struct ref_storage_be *be;
 673};
 674
 675/*
 676 * Fill in the generic part of refs and add it to our collection of
 677 * reference stores.
 678 */
 679void base_ref_store_init(struct ref_store *refs,
 680                         const struct ref_storage_be *be);
 681
 682#endif /* REFS_REFS_INTERNAL_H */