1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Used as a flag in ref_update::flags when the loose reference has 60 * been deleted. 61 */ 62#define REF_DELETED_LOOSE 0x200 63 64/* 65 * Return the length of time to retry acquiring a loose reference lock 66 * before giving up, in milliseconds: 67 */ 68longget_files_ref_lock_timeout_ms(void); 69 70/* 71 * Return true iff refname is minimally safe. "Safe" here means that 72 * deleting a loose reference by this name will not do any damage, for 73 * example by causing a file that is not a reference to be deleted. 74 * This function does not check that the reference name is legal; for 75 * that, use check_refname_format(). 76 * 77 * A refname that starts with "refs/" is considered safe iff it 78 * doesn't contain any "." or ".." components or consecutive '/' 79 * characters, end with '/', or (on Windows) contain any '\' 80 * characters. Names that do not start with "refs/" are considered 81 * safe iff they consist entirely of upper case characters and '_' 82 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). 83 */ 84intrefname_is_safe(const char*refname); 85 86enum peel_status { 87/* object was peeled successfully: */ 88 PEEL_PEELED =0, 89 90/* 91 * object cannot be peeled because the named object (or an 92 * object referred to by a tag in the peel chain), does not 93 * exist. 94 */ 95 PEEL_INVALID = -1, 96 97/* object cannot be peeled because it is not a tag: */ 98 PEEL_NON_TAG = -2, 99 100/* ref_entry contains no peeled value because it is a symref: */ 101 PEEL_IS_SYMREF = -3, 102 103/* 104 * ref_entry cannot be peeled because it is broken (i.e., the 105 * symbolic reference cannot even be resolved to an object 106 * name): 107 */ 108 PEEL_BROKEN = -4 109}; 110 111/* 112 * Peel the named object; i.e., if the object is a tag, resolve the 113 * tag recursively until a non-tag is found. If successful, store the 114 * result to sha1 and return PEEL_PEELED. If the object is not a tag 115 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 116 * and leave sha1 unchanged. 117 */ 118enum peel_status peel_object(const unsigned char*name,unsigned char*sha1); 119 120/* 121 * Copy the reflog message msg to buf, which has been allocated sufficiently 122 * large, while cleaning up the whitespaces. Especially, convert LF to space, 123 * because reflog file is one line per entry. 124 */ 125intcopy_reflog_msg(char*buf,const char*msg); 126 127/** 128 * Information needed for a single ref update. Set new_sha1 to the new 129 * value or to null_sha1 to delete the ref. To check the old value 130 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 131 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 132 * not exist before update. 133 */ 134struct ref_update { 135 136/* 137 * If (flags & REF_HAVE_NEW), set the reference to this value: 138 */ 139struct object_id new_oid; 140 141/* 142 * If (flags & REF_HAVE_OLD), check that the reference 143 * previously had this value: 144 */ 145struct object_id old_oid; 146 147/* 148 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 149 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, 150 * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and 151 * REF_DELETED_LOOSE: 152 */ 153unsigned int flags; 154 155void*backend_data; 156unsigned int type; 157char*msg; 158 159/* 160 * If this ref_update was split off of a symref update via 161 * split_symref_update(), then this member points at that 162 * update. This is used for two purposes: 163 * 1. When reporting errors, we report the refname under which 164 * the update was originally requested. 165 * 2. When we read the old value of this reference, we 166 * propagate it back to its parent update for recording in 167 * the latter's reflog. 168 */ 169struct ref_update *parent_update; 170 171const char refname[FLEX_ARRAY]; 172}; 173 174intrefs_read_raw_ref(struct ref_store *ref_store, 175const char*refname,unsigned char*sha1, 176struct strbuf *referent,unsigned int*type); 177 178/* 179 * Write an error to `err` and return a nonzero value iff the same 180 * refname appears multiple times in `refnames`. `refnames` must be 181 * sorted on entry to this function. 182 */ 183intref_update_reject_duplicates(struct string_list *refnames, 184struct strbuf *err); 185 186/* 187 * Add a ref_update with the specified properties to transaction, and 188 * return a pointer to the new object. This function does not verify 189 * that refname is well-formed. new_sha1 and old_sha1 are only 190 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 191 * respectively, are set in flags. 192 */ 193struct ref_update *ref_transaction_add_update( 194struct ref_transaction *transaction, 195const char*refname,unsigned int flags, 196const unsigned char*new_sha1, 197const unsigned char*old_sha1, 198const char*msg); 199 200/* 201 * Transaction states. 202 * 203 * OPEN: The transaction is initialized and new updates can still be 204 * added to it. An OPEN transaction can be prepared, 205 * committed, freed, or aborted (freeing and aborting an open 206 * transaction are equivalent). 207 * 208 * PREPARED: ref_transaction_prepare(), which locks all of the 209 * references involved in the update and checks that the 210 * update has no errors, has been called successfully for the 211 * transaction. A PREPARED transaction can be committed or 212 * aborted. 213 * 214 * CLOSED: The transaction is no longer active. A transaction becomes 215 * CLOSED if there is a failure while building the transaction 216 * or if a transaction is committed or aborted. A CLOSED 217 * transaction can only be freed. 218 */ 219enum ref_transaction_state { 220 REF_TRANSACTION_OPEN =0, 221 REF_TRANSACTION_PREPARED =1, 222 REF_TRANSACTION_CLOSED =2 223}; 224 225/* 226 * Data structure for holding a reference transaction, which can 227 * consist of checks and updates to multiple references, carried out 228 * as atomically as possible. This structure is opaque to callers. 229 */ 230struct ref_transaction { 231struct ref_store *ref_store; 232struct ref_update **updates; 233size_t alloc; 234size_t nr; 235enum ref_transaction_state state; 236}; 237 238/* 239 * Check for entries in extras that are within the specified 240 * directory, where dirname is a reference directory name including 241 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 242 * conflicting references that are found in skip. If there is a 243 * conflicting reference, return its name. 244 * 245 * extras and skip must be sorted lists of reference names. Either one 246 * can be NULL, signifying the empty list. 247 */ 248const char*find_descendant_ref(const char*dirname, 249const struct string_list *extras, 250const struct string_list *skip); 251 252/* 253 * Check whether an attempt to rename old_refname to new_refname would 254 * cause a D/F conflict with any existing reference (other than 255 * possibly old_refname). If there would be a conflict, emit an error 256 * message and return false; otherwise, return true. 257 * 258 * Note that this function is not safe against all races with other 259 * processes (though rename_ref() catches some races that might get by 260 * this check). 261 */ 262intrefs_rename_ref_available(struct ref_store *refs, 263const char*old_refname, 264const char*new_refname); 265 266/* We allow "recursive" symbolic refs. Only within reason, though */ 267#define SYMREF_MAXDEPTH 5 268 269/* Include broken references in a do_for_each_ref*() iteration: */ 270#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 271 272/* 273 * Reference iterators 274 * 275 * A reference iterator encapsulates the state of an in-progress 276 * iteration over references. Create an instance of `struct 277 * ref_iterator` via one of the functions in this module. 278 * 279 * A freshly-created ref_iterator doesn't yet point at a reference. To 280 * advance the iterator, call ref_iterator_advance(). If successful, 281 * this sets the iterator's refname, oid, and flags fields to describe 282 * the next reference and returns ITER_OK. The data pointed at by 283 * refname and oid belong to the iterator; if you want to retain them 284 * after calling ref_iterator_advance() again or calling 285 * ref_iterator_abort(), you must make a copy. When the iteration has 286 * been exhausted, ref_iterator_advance() releases any resources 287 * assocated with the iteration, frees the ref_iterator object, and 288 * returns ITER_DONE. If you want to abort the iteration early, call 289 * ref_iterator_abort(), which also frees the ref_iterator object and 290 * any associated resources. If there was an internal error advancing 291 * to the next entry, ref_iterator_advance() aborts the iteration, 292 * frees the ref_iterator, and returns ITER_ERROR. 293 * 294 * The reference currently being looked at can be peeled by calling 295 * ref_iterator_peel(). This function is often faster than peel_ref(), 296 * so it should be preferred when iterating over references. 297 * 298 * Putting it all together, a typical iteration looks like this: 299 * 300 * int ok; 301 * struct ref_iterator *iter = ...; 302 * 303 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 304 * if (want_to_stop_iteration()) { 305 * ok = ref_iterator_abort(iter); 306 * break; 307 * } 308 * 309 * // Access information about the current reference: 310 * if (!(iter->flags & REF_ISSYMREF)) 311 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 312 * 313 * // If you need to peel the reference: 314 * ref_iterator_peel(iter, &oid); 315 * } 316 * 317 * if (ok != ITER_DONE) 318 * handle_error(); 319 */ 320struct ref_iterator { 321struct ref_iterator_vtable *vtable; 322const char*refname; 323const struct object_id *oid; 324unsigned int flags; 325}; 326 327/* 328 * Advance the iterator to the first or next item and return ITER_OK. 329 * If the iteration is exhausted, free the resources associated with 330 * the ref_iterator and return ITER_DONE. On errors, free the iterator 331 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 332 * call this function again after it has returned ITER_DONE or 333 * ITER_ERROR. 334 */ 335intref_iterator_advance(struct ref_iterator *ref_iterator); 336 337/* 338 * If possible, peel the reference currently being viewed by the 339 * iterator. Return 0 on success. 340 */ 341intref_iterator_peel(struct ref_iterator *ref_iterator, 342struct object_id *peeled); 343 344/* 345 * End the iteration before it has been exhausted, freeing the 346 * reference iterator and any associated resources and returning 347 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 348 */ 349intref_iterator_abort(struct ref_iterator *ref_iterator); 350 351/* 352 * An iterator over nothing (its first ref_iterator_advance() call 353 * returns ITER_DONE). 354 */ 355struct ref_iterator *empty_ref_iterator_begin(void); 356 357/* 358 * Return true iff ref_iterator is an empty_ref_iterator. 359 */ 360intis_empty_ref_iterator(struct ref_iterator *ref_iterator); 361 362/* 363 * Return an iterator that goes over each reference in `refs` for 364 * which the refname begins with prefix. If trim is non-zero, then 365 * trim that many characters off the beginning of each refname. flags 366 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in 367 * the iteration. 368 */ 369struct ref_iterator *refs_ref_iterator_begin( 370struct ref_store *refs, 371const char*prefix,int trim,int flags); 372 373/* 374 * A callback function used to instruct merge_ref_iterator how to 375 * interleave the entries from iter0 and iter1. The function should 376 * return one of the constants defined in enum iterator_selection. It 377 * must not advance either of the iterators itself. 378 * 379 * The function must be prepared to handle the case that iter0 and/or 380 * iter1 is NULL, which indicates that the corresponding sub-iterator 381 * has been exhausted. Its return value must be consistent with the 382 * current states of the iterators; e.g., it must not return 383 * ITER_SKIP_1 if iter1 has already been exhausted. 384 */ 385typedefenum iterator_selection ref_iterator_select_fn( 386struct ref_iterator *iter0,struct ref_iterator *iter1, 387void*cb_data); 388 389/* 390 * Iterate over the entries from iter0 and iter1, with the values 391 * interleaved as directed by the select function. The iterator takes 392 * ownership of iter0 and iter1 and frees them when the iteration is 393 * over. 394 */ 395struct ref_iterator *merge_ref_iterator_begin( 396struct ref_iterator *iter0,struct ref_iterator *iter1, 397 ref_iterator_select_fn *select,void*cb_data); 398 399/* 400 * An iterator consisting of the union of the entries from front and 401 * back. If there are entries common to the two sub-iterators, use the 402 * one from front. Each iterator must iterate over its entries in 403 * strcmp() order by refname for this to work. 404 * 405 * The new iterator takes ownership of its arguments and frees them 406 * when the iteration is over. As a convenience to callers, if front 407 * or back is an empty_ref_iterator, then abort that one immediately 408 * and return the other iterator directly, without wrapping it. 409 */ 410struct ref_iterator *overlay_ref_iterator_begin( 411struct ref_iterator *front,struct ref_iterator *back); 412 413/* 414 * Wrap iter0, only letting through the references whose names start 415 * with prefix. If trim is set, set iter->refname to the name of the 416 * reference with that many characters trimmed off the front; 417 * otherwise set it to the full refname. The new iterator takes over 418 * ownership of iter0 and frees it when iteration is over. It makes 419 * its own copy of prefix. 420 * 421 * As an convenience to callers, if prefix is the empty string and 422 * trim is zero, this function returns iter0 directly, without 423 * wrapping it. 424 */ 425struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 426const char*prefix, 427int trim); 428 429/* Internal implementation of reference iteration: */ 430 431/* 432 * Base class constructor for ref_iterators. Initialize the 433 * ref_iterator part of iter, setting its vtable pointer as specified. 434 * This is meant to be called only by the initializers of derived 435 * classes. 436 */ 437voidbase_ref_iterator_init(struct ref_iterator *iter, 438struct ref_iterator_vtable *vtable); 439 440/* 441 * Base class destructor for ref_iterators. Destroy the ref_iterator 442 * part of iter and shallow-free the object. This is meant to be 443 * called only by the destructors of derived classes. 444 */ 445voidbase_ref_iterator_free(struct ref_iterator *iter); 446 447/* Virtual function declarations for ref_iterators: */ 448 449typedefintref_iterator_advance_fn(struct ref_iterator *ref_iterator); 450 451typedefintref_iterator_peel_fn(struct ref_iterator *ref_iterator, 452struct object_id *peeled); 453 454/* 455 * Implementations of this function should free any resources specific 456 * to the derived class, then call base_ref_iterator_free() to clean 457 * up and free the ref_iterator object. 458 */ 459typedefintref_iterator_abort_fn(struct ref_iterator *ref_iterator); 460 461struct ref_iterator_vtable { 462 ref_iterator_advance_fn *advance; 463 ref_iterator_peel_fn *peel; 464 ref_iterator_abort_fn *abort; 465}; 466 467/* 468 * current_ref_iter is a performance hack: when iterating over 469 * references using the for_each_ref*() functions, current_ref_iter is 470 * set to the reference iterator before calling the callback function. 471 * If the callback function calls peel_ref(), then peel_ref() first 472 * checks whether the reference to be peeled is the one referred to by 473 * the iterator (it usually is) and if so, asks the iterator for the 474 * peeled version of the reference if it is available. This avoids a 475 * refname lookup in a common case. current_ref_iter is set to NULL 476 * when the iteration is over. 477 */ 478externstruct ref_iterator *current_ref_iter; 479 480/* 481 * The common backend for the for_each_*ref* functions. Call fn for 482 * each reference in iter. If the iterator itself ever returns 483 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 484 * the iteration and return that value. Otherwise, return 0. In any 485 * case, free the iterator when done. This function is basically an 486 * adapter between the callback style of reference iteration and the 487 * iterator style. 488 */ 489intdo_for_each_ref_iterator(struct ref_iterator *iter, 490 each_ref_fn fn,void*cb_data); 491 492/* 493 * Only include per-worktree refs in a do_for_each_ref*() iteration. 494 * Normally this will be used with a files ref_store, since that's 495 * where all reference backends will presumably store their 496 * per-worktree refs. 497 */ 498#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 499 500struct ref_store; 501 502/* refs backends */ 503 504/* ref_store_init flags */ 505#define REF_STORE_READ (1 << 0) 506#define REF_STORE_WRITE (1 << 1)/* can perform update operations */ 507#define REF_STORE_ODB (1 << 2)/* has access to object database */ 508#define REF_STORE_MAIN (1 << 3) 509#define REF_STORE_ALL_CAPS (REF_STORE_READ | \ 510 REF_STORE_WRITE | \ 511 REF_STORE_ODB | \ 512 REF_STORE_MAIN) 513 514/* 515 * Initialize the ref_store for the specified gitdir. These functions 516 * should call base_ref_store_init() to initialize the shared part of 517 * the ref_store and to record the ref_store for later lookup. 518 */ 519typedefstruct ref_store *ref_store_init_fn(const char*gitdir, 520unsigned int flags); 521 522typedefintref_init_db_fn(struct ref_store *refs,struct strbuf *err); 523 524typedefintref_transaction_prepare_fn(struct ref_store *refs, 525struct ref_transaction *transaction, 526struct strbuf *err); 527 528typedefintref_transaction_finish_fn(struct ref_store *refs, 529struct ref_transaction *transaction, 530struct strbuf *err); 531 532typedefintref_transaction_abort_fn(struct ref_store *refs, 533struct ref_transaction *transaction, 534struct strbuf *err); 535 536typedefintref_transaction_commit_fn(struct ref_store *refs, 537struct ref_transaction *transaction, 538struct strbuf *err); 539 540typedefintpack_refs_fn(struct ref_store *ref_store,unsigned int flags); 541typedefintpeel_ref_fn(struct ref_store *ref_store, 542const char*refname,unsigned char*sha1); 543typedefintcreate_symref_fn(struct ref_store *ref_store, 544const char*ref_target, 545const char*refs_heads_master, 546const char*logmsg); 547typedefintdelete_refs_fn(struct ref_store *ref_store,const char*msg, 548struct string_list *refnames,unsigned int flags); 549typedefintrename_ref_fn(struct ref_store *ref_store, 550const char*oldref,const char*newref, 551const char*logmsg); 552 553/* 554 * Iterate over the references in `ref_store` whose names start with 555 * `prefix`. `prefix` is matched as a literal string, without regard 556 * for path separators. If prefix is NULL or the empty string, iterate 557 * over all references in `ref_store`. 558 */ 559typedefstruct ref_iterator *ref_iterator_begin_fn( 560struct ref_store *ref_store, 561const char*prefix,unsigned int flags); 562 563/* reflog functions */ 564 565/* 566 * Iterate over the references in the specified ref_store that have a 567 * reflog. The refs are iterated over in arbitrary order. 568 */ 569typedefstruct ref_iterator *reflog_iterator_begin_fn( 570struct ref_store *ref_store); 571 572typedefintfor_each_reflog_ent_fn(struct ref_store *ref_store, 573const char*refname, 574 each_reflog_ent_fn fn, 575void*cb_data); 576typedefintfor_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 577const char*refname, 578 each_reflog_ent_fn fn, 579void*cb_data); 580typedefintreflog_exists_fn(struct ref_store *ref_store,const char*refname); 581typedefintcreate_reflog_fn(struct ref_store *ref_store,const char*refname, 582int force_create,struct strbuf *err); 583typedefintdelete_reflog_fn(struct ref_store *ref_store,const char*refname); 584typedefintreflog_expire_fn(struct ref_store *ref_store, 585const char*refname,const unsigned char*sha1, 586unsigned int flags, 587 reflog_expiry_prepare_fn prepare_fn, 588 reflog_expiry_should_prune_fn should_prune_fn, 589 reflog_expiry_cleanup_fn cleanup_fn, 590void*policy_cb_data); 591 592/* 593 * Read a reference from the specified reference store, non-recursively. 594 * Set type to describe the reference, and: 595 * 596 * - If refname is the name of a normal reference, fill in sha1 597 * (leaving referent unchanged). 598 * 599 * - If refname is the name of a symbolic reference, write the full 600 * name of the reference to which it refers (e.g. 601 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 602 * type (leaving sha1 unchanged). The caller is responsible for 603 * validating that referent is a valid reference name. 604 * 605 * WARNING: refname might be used as part of a filename, so it is 606 * important from a security standpoint that it be safe in the sense 607 * of refname_is_safe(). Moreover, for symrefs this function sets 608 * referent to whatever the repository says, which might not be a 609 * properly-formatted or even safe reference name. NEITHER INPUT NOR 610 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 611 * 612 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 613 * and return -1. If the ref exists but is neither a symbolic ref nor 614 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 615 * EINVAL, and return -1. If there is another error reading the ref, 616 * set errno appropriately and return -1. 617 * 618 * Backend-specific flags might be set in type as well, regardless of 619 * outcome. 620 * 621 * It is OK for refname to point into referent. If so: 622 * 623 * - if the function succeeds with REF_ISSYMREF, referent will be 624 * overwritten and the memory formerly pointed to by it might be 625 * changed or even freed. 626 * 627 * - in all other cases, referent will be untouched, and therefore 628 * refname will still be valid and unchanged. 629 */ 630typedefintread_raw_ref_fn(struct ref_store *ref_store, 631const char*refname,unsigned char*sha1, 632struct strbuf *referent,unsigned int*type); 633 634struct ref_storage_be { 635struct ref_storage_be *next; 636const char*name; 637 ref_store_init_fn *init; 638 ref_init_db_fn *init_db; 639 640 ref_transaction_prepare_fn *transaction_prepare; 641 ref_transaction_finish_fn *transaction_finish; 642 ref_transaction_abort_fn *transaction_abort; 643 ref_transaction_commit_fn *initial_transaction_commit; 644 645 pack_refs_fn *pack_refs; 646 peel_ref_fn *peel_ref; 647 create_symref_fn *create_symref; 648 delete_refs_fn *delete_refs; 649 rename_ref_fn *rename_ref; 650 651 ref_iterator_begin_fn *iterator_begin; 652 read_raw_ref_fn *read_raw_ref; 653 654 reflog_iterator_begin_fn *reflog_iterator_begin; 655 for_each_reflog_ent_fn *for_each_reflog_ent; 656 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 657 reflog_exists_fn *reflog_exists; 658 create_reflog_fn *create_reflog; 659 delete_reflog_fn *delete_reflog; 660 reflog_expire_fn *reflog_expire; 661}; 662 663externstruct ref_storage_be refs_be_files; 664 665/* 666 * A representation of the reference store for the main repository or 667 * a submodule. The ref_store instances for submodules are kept in a 668 * linked list. 669 */ 670struct ref_store { 671/* The backend describing this ref_store's storage scheme: */ 672const struct ref_storage_be *be; 673}; 674 675/* 676 * Fill in the generic part of refs and add it to our collection of 677 * reference stores. 678 */ 679voidbase_ref_store_init(struct ref_store *refs, 680const struct ref_storage_be *be); 681 682#endif/* REFS_REFS_INTERNAL_H */