run-command.con commit run-command: mark path lookup errors with ENOENT (321fd82)
   1#include "cache.h"
   2#include "run-command.h"
   3#include "exec_cmd.h"
   4#include "sigchain.h"
   5#include "argv-array.h"
   6#include "thread-utils.h"
   7#include "strbuf.h"
   8
   9void child_process_init(struct child_process *child)
  10{
  11        memset(child, 0, sizeof(*child));
  12        argv_array_init(&child->args);
  13        argv_array_init(&child->env_array);
  14}
  15
  16void child_process_clear(struct child_process *child)
  17{
  18        argv_array_clear(&child->args);
  19        argv_array_clear(&child->env_array);
  20}
  21
  22struct child_to_clean {
  23        pid_t pid;
  24        struct child_process *process;
  25        struct child_to_clean *next;
  26};
  27static struct child_to_clean *children_to_clean;
  28static int installed_child_cleanup_handler;
  29
  30static void cleanup_children(int sig, int in_signal)
  31{
  32        struct child_to_clean *children_to_wait_for = NULL;
  33
  34        while (children_to_clean) {
  35                struct child_to_clean *p = children_to_clean;
  36                children_to_clean = p->next;
  37
  38                if (p->process && !in_signal) {
  39                        struct child_process *process = p->process;
  40                        if (process->clean_on_exit_handler) {
  41                                trace_printf(
  42                                        "trace: run_command: running exit handler for pid %"
  43                                        PRIuMAX, (uintmax_t)p->pid
  44                                );
  45                                process->clean_on_exit_handler(process);
  46                        }
  47                }
  48
  49                kill(p->pid, sig);
  50
  51                if (p->process && p->process->wait_after_clean) {
  52                        p->next = children_to_wait_for;
  53                        children_to_wait_for = p;
  54                } else {
  55                        if (!in_signal)
  56                                free(p);
  57                }
  58        }
  59
  60        while (children_to_wait_for) {
  61                struct child_to_clean *p = children_to_wait_for;
  62                children_to_wait_for = p->next;
  63
  64                while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
  65                        ; /* spin waiting for process exit or error */
  66
  67                if (!in_signal)
  68                        free(p);
  69        }
  70}
  71
  72static void cleanup_children_on_signal(int sig)
  73{
  74        cleanup_children(sig, 1);
  75        sigchain_pop(sig);
  76        raise(sig);
  77}
  78
  79static void cleanup_children_on_exit(void)
  80{
  81        cleanup_children(SIGTERM, 0);
  82}
  83
  84static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
  85{
  86        struct child_to_clean *p = xmalloc(sizeof(*p));
  87        p->pid = pid;
  88        p->process = process;
  89        p->next = children_to_clean;
  90        children_to_clean = p;
  91
  92        if (!installed_child_cleanup_handler) {
  93                atexit(cleanup_children_on_exit);
  94                sigchain_push_common(cleanup_children_on_signal);
  95                installed_child_cleanup_handler = 1;
  96        }
  97}
  98
  99static void clear_child_for_cleanup(pid_t pid)
 100{
 101        struct child_to_clean **pp;
 102
 103        for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
 104                struct child_to_clean *clean_me = *pp;
 105
 106                if (clean_me->pid == pid) {
 107                        *pp = clean_me->next;
 108                        free(clean_me);
 109                        return;
 110                }
 111        }
 112}
 113
 114static inline void close_pair(int fd[2])
 115{
 116        close(fd[0]);
 117        close(fd[1]);
 118}
 119
 120int is_executable(const char *name)
 121{
 122        struct stat st;
 123
 124        if (stat(name, &st) || /* stat, not lstat */
 125            !S_ISREG(st.st_mode))
 126                return 0;
 127
 128#if defined(GIT_WINDOWS_NATIVE)
 129        /*
 130         * On Windows there is no executable bit. The file extension
 131         * indicates whether it can be run as an executable, and Git
 132         * has special-handling to detect scripts and launch them
 133         * through the indicated script interpreter. We test for the
 134         * file extension first because virus scanners may make
 135         * it quite expensive to open many files.
 136         */
 137        if (ends_with(name, ".exe"))
 138                return S_IXUSR;
 139
 140{
 141        /*
 142         * Now that we know it does not have an executable extension,
 143         * peek into the file instead.
 144         */
 145        char buf[3] = { 0 };
 146        int n;
 147        int fd = open(name, O_RDONLY);
 148        st.st_mode &= ~S_IXUSR;
 149        if (fd >= 0) {
 150                n = read(fd, buf, 2);
 151                if (n == 2)
 152                        /* look for a she-bang */
 153                        if (!strcmp(buf, "#!"))
 154                                st.st_mode |= S_IXUSR;
 155                close(fd);
 156        }
 157}
 158#endif
 159        return st.st_mode & S_IXUSR;
 160}
 161
 162/*
 163 * Search $PATH for a command.  This emulates the path search that
 164 * execvp would perform, without actually executing the command so it
 165 * can be used before fork() to prepare to run a command using
 166 * execve() or after execvp() to diagnose why it failed.
 167 *
 168 * The caller should ensure that file contains no directory
 169 * separators.
 170 *
 171 * Returns the path to the command, as found in $PATH or NULL if the
 172 * command could not be found.  The caller inherits ownership of the memory
 173 * used to store the resultant path.
 174 *
 175 * This should not be used on Windows, where the $PATH search rules
 176 * are more complicated (e.g., a search for "foo" should find
 177 * "foo.exe").
 178 */
 179static char *locate_in_PATH(const char *file)
 180{
 181        const char *p = getenv("PATH");
 182        struct strbuf buf = STRBUF_INIT;
 183
 184        if (!p || !*p)
 185                return NULL;
 186
 187        while (1) {
 188                const char *end = strchrnul(p, ':');
 189
 190                strbuf_reset(&buf);
 191
 192                /* POSIX specifies an empty entry as the current directory. */
 193                if (end != p) {
 194                        strbuf_add(&buf, p, end - p);
 195                        strbuf_addch(&buf, '/');
 196                }
 197                strbuf_addstr(&buf, file);
 198
 199                if (is_executable(buf.buf))
 200                        return strbuf_detach(&buf, NULL);
 201
 202                if (!*end)
 203                        break;
 204                p = end + 1;
 205        }
 206
 207        strbuf_release(&buf);
 208        return NULL;
 209}
 210
 211static int exists_in_PATH(const char *file)
 212{
 213        char *r = locate_in_PATH(file);
 214        free(r);
 215        return r != NULL;
 216}
 217
 218int sane_execvp(const char *file, char * const argv[])
 219{
 220        if (!execvp(file, argv))
 221                return 0; /* cannot happen ;-) */
 222
 223        /*
 224         * When a command can't be found because one of the directories
 225         * listed in $PATH is unsearchable, execvp reports EACCES, but
 226         * careful usability testing (read: analysis of occasional bug
 227         * reports) reveals that "No such file or directory" is more
 228         * intuitive.
 229         *
 230         * We avoid commands with "/", because execvp will not do $PATH
 231         * lookups in that case.
 232         *
 233         * The reassignment of EACCES to errno looks like a no-op below,
 234         * but we need to protect against exists_in_PATH overwriting errno.
 235         */
 236        if (errno == EACCES && !strchr(file, '/'))
 237                errno = exists_in_PATH(file) ? EACCES : ENOENT;
 238        else if (errno == ENOTDIR && !strchr(file, '/'))
 239                errno = ENOENT;
 240        return -1;
 241}
 242
 243static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
 244{
 245        if (!argv[0])
 246                die("BUG: shell command is empty");
 247
 248        if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
 249#ifndef GIT_WINDOWS_NATIVE
 250                argv_array_push(out, SHELL_PATH);
 251#else
 252                argv_array_push(out, "sh");
 253#endif
 254                argv_array_push(out, "-c");
 255
 256                /*
 257                 * If we have no extra arguments, we do not even need to
 258                 * bother with the "$@" magic.
 259                 */
 260                if (!argv[1])
 261                        argv_array_push(out, argv[0]);
 262                else
 263                        argv_array_pushf(out, "%s \"$@\"", argv[0]);
 264        }
 265
 266        argv_array_pushv(out, argv);
 267        return out->argv;
 268}
 269
 270#ifndef GIT_WINDOWS_NATIVE
 271static int child_notifier = -1;
 272
 273enum child_errcode {
 274        CHILD_ERR_CHDIR,
 275        CHILD_ERR_DUP2,
 276        CHILD_ERR_CLOSE,
 277        CHILD_ERR_SIGPROCMASK,
 278        CHILD_ERR_ENOENT,
 279        CHILD_ERR_SILENT,
 280        CHILD_ERR_ERRNO
 281};
 282
 283struct child_err {
 284        enum child_errcode err;
 285        int syserr; /* errno */
 286};
 287
 288static void child_die(enum child_errcode err)
 289{
 290        struct child_err buf;
 291
 292        buf.err = err;
 293        buf.syserr = errno;
 294
 295        /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
 296        xwrite(child_notifier, &buf, sizeof(buf));
 297        _exit(1);
 298}
 299
 300static void child_dup2(int fd, int to)
 301{
 302        if (dup2(fd, to) < 0)
 303                child_die(CHILD_ERR_DUP2);
 304}
 305
 306static void child_close(int fd)
 307{
 308        if (close(fd))
 309                child_die(CHILD_ERR_CLOSE);
 310}
 311
 312static void child_close_pair(int fd[2])
 313{
 314        child_close(fd[0]);
 315        child_close(fd[1]);
 316}
 317
 318/*
 319 * parent will make it look like the child spewed a fatal error and died
 320 * this is needed to prevent changes to t0061.
 321 */
 322static void fake_fatal(const char *err, va_list params)
 323{
 324        vreportf("fatal: ", err, params);
 325}
 326
 327static void child_error_fn(const char *err, va_list params)
 328{
 329        const char msg[] = "error() should not be called in child\n";
 330        xwrite(2, msg, sizeof(msg) - 1);
 331}
 332
 333static void child_warn_fn(const char *err, va_list params)
 334{
 335        const char msg[] = "warn() should not be called in child\n";
 336        xwrite(2, msg, sizeof(msg) - 1);
 337}
 338
 339static void NORETURN child_die_fn(const char *err, va_list params)
 340{
 341        const char msg[] = "die() should not be called in child\n";
 342        xwrite(2, msg, sizeof(msg) - 1);
 343        _exit(2);
 344}
 345
 346/* this runs in the parent process */
 347static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
 348{
 349        static void (*old_errfn)(const char *err, va_list params);
 350
 351        old_errfn = get_error_routine();
 352        set_error_routine(fake_fatal);
 353        errno = cerr->syserr;
 354
 355        switch (cerr->err) {
 356        case CHILD_ERR_CHDIR:
 357                error_errno("exec '%s': cd to '%s' failed",
 358                            cmd->argv[0], cmd->dir);
 359                break;
 360        case CHILD_ERR_DUP2:
 361                error_errno("dup2() in child failed");
 362                break;
 363        case CHILD_ERR_CLOSE:
 364                error_errno("close() in child failed");
 365                break;
 366        case CHILD_ERR_SIGPROCMASK:
 367                error_errno("sigprocmask failed restoring signals");
 368                break;
 369        case CHILD_ERR_ENOENT:
 370                error_errno("cannot run %s", cmd->argv[0]);
 371                break;
 372        case CHILD_ERR_SILENT:
 373                break;
 374        case CHILD_ERR_ERRNO:
 375                error_errno("cannot exec '%s'", cmd->argv[0]);
 376                break;
 377        }
 378        set_error_routine(old_errfn);
 379}
 380
 381static int prepare_cmd(struct argv_array *out, const struct child_process *cmd)
 382{
 383        if (!cmd->argv[0])
 384                die("BUG: command is empty");
 385
 386        /*
 387         * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
 388         * attempt to interpret the command with 'sh'.
 389         */
 390        argv_array_push(out, SHELL_PATH);
 391
 392        if (cmd->git_cmd) {
 393                argv_array_push(out, "git");
 394                argv_array_pushv(out, cmd->argv);
 395        } else if (cmd->use_shell) {
 396                prepare_shell_cmd(out, cmd->argv);
 397        } else {
 398                argv_array_pushv(out, cmd->argv);
 399        }
 400
 401        /*
 402         * If there are no '/' characters in the command then perform a path
 403         * lookup and use the resolved path as the command to exec.  If there
 404         * are '/' characters, we have exec attempt to invoke the command
 405         * directly.
 406         */
 407        if (!strchr(out->argv[1], '/')) {
 408                char *program = locate_in_PATH(out->argv[1]);
 409                if (program) {
 410                        free((char *)out->argv[1]);
 411                        out->argv[1] = program;
 412                } else {
 413                        argv_array_clear(out);
 414                        errno = ENOENT;
 415                        return -1;
 416                }
 417        }
 418
 419        return 0;
 420}
 421
 422static char **prep_childenv(const char *const *deltaenv)
 423{
 424        extern char **environ;
 425        char **childenv;
 426        struct string_list env = STRING_LIST_INIT_DUP;
 427        struct strbuf key = STRBUF_INIT;
 428        const char *const *p;
 429        int i;
 430
 431        /* Construct a sorted string list consisting of the current environ */
 432        for (p = (const char *const *) environ; p && *p; p++) {
 433                const char *equals = strchr(*p, '=');
 434
 435                if (equals) {
 436                        strbuf_reset(&key);
 437                        strbuf_add(&key, *p, equals - *p);
 438                        string_list_append(&env, key.buf)->util = (void *) *p;
 439                } else {
 440                        string_list_append(&env, *p)->util = (void *) *p;
 441                }
 442        }
 443        string_list_sort(&env);
 444
 445        /* Merge in 'deltaenv' with the current environ */
 446        for (p = deltaenv; p && *p; p++) {
 447                const char *equals = strchr(*p, '=');
 448
 449                if (equals) {
 450                        /* ('key=value'), insert or replace entry */
 451                        strbuf_reset(&key);
 452                        strbuf_add(&key, *p, equals - *p);
 453                        string_list_insert(&env, key.buf)->util = (void *) *p;
 454                } else {
 455                        /* otherwise ('key') remove existing entry */
 456                        string_list_remove(&env, *p, 0);
 457                }
 458        }
 459
 460        /* Create an array of 'char *' to be used as the childenv */
 461        ALLOC_ARRAY(childenv, env.nr + 1);
 462        for (i = 0; i < env.nr; i++)
 463                childenv[i] = env.items[i].util;
 464        childenv[env.nr] = NULL;
 465
 466        string_list_clear(&env, 0);
 467        strbuf_release(&key);
 468        return childenv;
 469}
 470
 471struct atfork_state {
 472#ifndef NO_PTHREADS
 473        int cs;
 474#endif
 475        sigset_t old;
 476};
 477
 478#ifndef NO_PTHREADS
 479static void bug_die(int err, const char *msg)
 480{
 481        if (err) {
 482                errno = err;
 483                die_errno("BUG: %s", msg);
 484        }
 485}
 486#endif
 487
 488static void atfork_prepare(struct atfork_state *as)
 489{
 490        sigset_t all;
 491
 492        if (sigfillset(&all))
 493                die_errno("sigfillset");
 494#ifdef NO_PTHREADS
 495        if (sigprocmask(SIG_SETMASK, &all, &as->old))
 496                die_errno("sigprocmask");
 497#else
 498        bug_die(pthread_sigmask(SIG_SETMASK, &all, &as->old),
 499                "blocking all signals");
 500        bug_die(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
 501                "disabling cancellation");
 502#endif
 503}
 504
 505static void atfork_parent(struct atfork_state *as)
 506{
 507#ifdef NO_PTHREADS
 508        if (sigprocmask(SIG_SETMASK, &as->old, NULL))
 509                die_errno("sigprocmask");
 510#else
 511        bug_die(pthread_setcancelstate(as->cs, NULL),
 512                "re-enabling cancellation");
 513        bug_die(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
 514                "restoring signal mask");
 515#endif
 516}
 517#endif /* GIT_WINDOWS_NATIVE */
 518
 519static inline void set_cloexec(int fd)
 520{
 521        int flags = fcntl(fd, F_GETFD);
 522        if (flags >= 0)
 523                fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
 524}
 525
 526static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
 527{
 528        int status, code = -1;
 529        pid_t waiting;
 530        int failed_errno = 0;
 531
 532        while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
 533                ;       /* nothing */
 534        if (in_signal)
 535                return 0;
 536
 537        if (waiting < 0) {
 538                failed_errno = errno;
 539                error_errno("waitpid for %s failed", argv0);
 540        } else if (waiting != pid) {
 541                error("waitpid is confused (%s)", argv0);
 542        } else if (WIFSIGNALED(status)) {
 543                code = WTERMSIG(status);
 544                if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
 545                        error("%s died of signal %d", argv0, code);
 546                /*
 547                 * This return value is chosen so that code & 0xff
 548                 * mimics the exit code that a POSIX shell would report for
 549                 * a program that died from this signal.
 550                 */
 551                code += 128;
 552        } else if (WIFEXITED(status)) {
 553                code = WEXITSTATUS(status);
 554        } else {
 555                error("waitpid is confused (%s)", argv0);
 556        }
 557
 558        clear_child_for_cleanup(pid);
 559
 560        errno = failed_errno;
 561        return code;
 562}
 563
 564int start_command(struct child_process *cmd)
 565{
 566        int need_in, need_out, need_err;
 567        int fdin[2], fdout[2], fderr[2];
 568        int failed_errno;
 569        char *str;
 570
 571        if (!cmd->argv)
 572                cmd->argv = cmd->args.argv;
 573        if (!cmd->env)
 574                cmd->env = cmd->env_array.argv;
 575
 576        /*
 577         * In case of errors we must keep the promise to close FDs
 578         * that have been passed in via ->in and ->out.
 579         */
 580
 581        need_in = !cmd->no_stdin && cmd->in < 0;
 582        if (need_in) {
 583                if (pipe(fdin) < 0) {
 584                        failed_errno = errno;
 585                        if (cmd->out > 0)
 586                                close(cmd->out);
 587                        str = "standard input";
 588                        goto fail_pipe;
 589                }
 590                cmd->in = fdin[1];
 591        }
 592
 593        need_out = !cmd->no_stdout
 594                && !cmd->stdout_to_stderr
 595                && cmd->out < 0;
 596        if (need_out) {
 597                if (pipe(fdout) < 0) {
 598                        failed_errno = errno;
 599                        if (need_in)
 600                                close_pair(fdin);
 601                        else if (cmd->in)
 602                                close(cmd->in);
 603                        str = "standard output";
 604                        goto fail_pipe;
 605                }
 606                cmd->out = fdout[0];
 607        }
 608
 609        need_err = !cmd->no_stderr && cmd->err < 0;
 610        if (need_err) {
 611                if (pipe(fderr) < 0) {
 612                        failed_errno = errno;
 613                        if (need_in)
 614                                close_pair(fdin);
 615                        else if (cmd->in)
 616                                close(cmd->in);
 617                        if (need_out)
 618                                close_pair(fdout);
 619                        else if (cmd->out)
 620                                close(cmd->out);
 621                        str = "standard error";
 622fail_pipe:
 623                        error("cannot create %s pipe for %s: %s",
 624                                str, cmd->argv[0], strerror(failed_errno));
 625                        child_process_clear(cmd);
 626                        errno = failed_errno;
 627                        return -1;
 628                }
 629                cmd->err = fderr[0];
 630        }
 631
 632        trace_argv_printf(cmd->argv, "trace: run_command:");
 633        fflush(NULL);
 634
 635#ifndef GIT_WINDOWS_NATIVE
 636{
 637        int notify_pipe[2];
 638        int null_fd = -1;
 639        char **childenv;
 640        struct argv_array argv = ARGV_ARRAY_INIT;
 641        struct child_err cerr;
 642        struct atfork_state as;
 643
 644        if (prepare_cmd(&argv, cmd) < 0) {
 645                failed_errno = errno;
 646                cmd->pid = -1;
 647                goto end_of_spawn;
 648        }
 649
 650        if (pipe(notify_pipe))
 651                notify_pipe[0] = notify_pipe[1] = -1;
 652
 653        if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
 654                null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
 655                if (null_fd < 0)
 656                        die_errno(_("open /dev/null failed"));
 657                set_cloexec(null_fd);
 658        }
 659
 660        childenv = prep_childenv(cmd->env);
 661        atfork_prepare(&as);
 662
 663        /*
 664         * NOTE: In order to prevent deadlocking when using threads special
 665         * care should be taken with the function calls made in between the
 666         * fork() and exec() calls.  No calls should be made to functions which
 667         * require acquiring a lock (e.g. malloc) as the lock could have been
 668         * held by another thread at the time of forking, causing the lock to
 669         * never be released in the child process.  This means only
 670         * Async-Signal-Safe functions are permitted in the child.
 671         */
 672        cmd->pid = fork();
 673        failed_errno = errno;
 674        if (!cmd->pid) {
 675                int sig;
 676                /*
 677                 * Ensure the default die/error/warn routines do not get
 678                 * called, they can take stdio locks and malloc.
 679                 */
 680                set_die_routine(child_die_fn);
 681                set_error_routine(child_error_fn);
 682                set_warn_routine(child_warn_fn);
 683
 684                close(notify_pipe[0]);
 685                set_cloexec(notify_pipe[1]);
 686                child_notifier = notify_pipe[1];
 687
 688                if (cmd->no_stdin)
 689                        child_dup2(null_fd, 0);
 690                else if (need_in) {
 691                        child_dup2(fdin[0], 0);
 692                        child_close_pair(fdin);
 693                } else if (cmd->in) {
 694                        child_dup2(cmd->in, 0);
 695                        child_close(cmd->in);
 696                }
 697
 698                if (cmd->no_stderr)
 699                        child_dup2(null_fd, 2);
 700                else if (need_err) {
 701                        child_dup2(fderr[1], 2);
 702                        child_close_pair(fderr);
 703                } else if (cmd->err > 1) {
 704                        child_dup2(cmd->err, 2);
 705                        child_close(cmd->err);
 706                }
 707
 708                if (cmd->no_stdout)
 709                        child_dup2(null_fd, 1);
 710                else if (cmd->stdout_to_stderr)
 711                        child_dup2(2, 1);
 712                else if (need_out) {
 713                        child_dup2(fdout[1], 1);
 714                        child_close_pair(fdout);
 715                } else if (cmd->out > 1) {
 716                        child_dup2(cmd->out, 1);
 717                        child_close(cmd->out);
 718                }
 719
 720                if (cmd->dir && chdir(cmd->dir))
 721                        child_die(CHILD_ERR_CHDIR);
 722
 723                /*
 724                 * restore default signal handlers here, in case
 725                 * we catch a signal right before execve below
 726                 */
 727                for (sig = 1; sig < NSIG; sig++) {
 728                        /* ignored signals get reset to SIG_DFL on execve */
 729                        if (signal(sig, SIG_DFL) == SIG_IGN)
 730                                signal(sig, SIG_IGN);
 731                }
 732
 733                if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
 734                        child_die(CHILD_ERR_SIGPROCMASK);
 735
 736                /*
 737                 * Attempt to exec using the command and arguments starting at
 738                 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
 739                 * be used in the event exec failed with ENOEXEC at which point
 740                 * we will try to interpret the command using 'sh'.
 741                 */
 742                execve(argv.argv[1], (char *const *) argv.argv + 1,
 743                       (char *const *) childenv);
 744                if (errno == ENOEXEC)
 745                        execve(argv.argv[0], (char *const *) argv.argv,
 746                               (char *const *) childenv);
 747
 748                if (errno == ENOENT) {
 749                        if (cmd->silent_exec_failure)
 750                                child_die(CHILD_ERR_SILENT);
 751                        child_die(CHILD_ERR_ENOENT);
 752                } else {
 753                        child_die(CHILD_ERR_ERRNO);
 754                }
 755        }
 756        atfork_parent(&as);
 757        if (cmd->pid < 0)
 758                error_errno("cannot fork() for %s", cmd->argv[0]);
 759        else if (cmd->clean_on_exit)
 760                mark_child_for_cleanup(cmd->pid, cmd);
 761
 762        /*
 763         * Wait for child's exec. If the exec succeeds (or if fork()
 764         * failed), EOF is seen immediately by the parent. Otherwise, the
 765         * child process sends a child_err struct.
 766         * Note that use of this infrastructure is completely advisory,
 767         * therefore, we keep error checks minimal.
 768         */
 769        close(notify_pipe[1]);
 770        if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
 771                /*
 772                 * At this point we know that fork() succeeded, but exec()
 773                 * failed. Errors have been reported to our stderr.
 774                 */
 775                wait_or_whine(cmd->pid, cmd->argv[0], 0);
 776                child_err_spew(cmd, &cerr);
 777                failed_errno = errno;
 778                cmd->pid = -1;
 779        }
 780        close(notify_pipe[0]);
 781
 782        if (null_fd >= 0)
 783                close(null_fd);
 784        argv_array_clear(&argv);
 785        free(childenv);
 786}
 787end_of_spawn:
 788
 789#else
 790{
 791        int fhin = 0, fhout = 1, fherr = 2;
 792        const char **sargv = cmd->argv;
 793        struct argv_array nargv = ARGV_ARRAY_INIT;
 794
 795        if (cmd->no_stdin)
 796                fhin = open("/dev/null", O_RDWR);
 797        else if (need_in)
 798                fhin = dup(fdin[0]);
 799        else if (cmd->in)
 800                fhin = dup(cmd->in);
 801
 802        if (cmd->no_stderr)
 803                fherr = open("/dev/null", O_RDWR);
 804        else if (need_err)
 805                fherr = dup(fderr[1]);
 806        else if (cmd->err > 2)
 807                fherr = dup(cmd->err);
 808
 809        if (cmd->no_stdout)
 810                fhout = open("/dev/null", O_RDWR);
 811        else if (cmd->stdout_to_stderr)
 812                fhout = dup(fherr);
 813        else if (need_out)
 814                fhout = dup(fdout[1]);
 815        else if (cmd->out > 1)
 816                fhout = dup(cmd->out);
 817
 818        if (cmd->git_cmd)
 819                cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
 820        else if (cmd->use_shell)
 821                cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
 822
 823        cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
 824                        cmd->dir, fhin, fhout, fherr);
 825        failed_errno = errno;
 826        if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
 827                error_errno("cannot spawn %s", cmd->argv[0]);
 828        if (cmd->clean_on_exit && cmd->pid >= 0)
 829                mark_child_for_cleanup(cmd->pid, cmd);
 830
 831        argv_array_clear(&nargv);
 832        cmd->argv = sargv;
 833        if (fhin != 0)
 834                close(fhin);
 835        if (fhout != 1)
 836                close(fhout);
 837        if (fherr != 2)
 838                close(fherr);
 839}
 840#endif
 841
 842        if (cmd->pid < 0) {
 843                if (need_in)
 844                        close_pair(fdin);
 845                else if (cmd->in)
 846                        close(cmd->in);
 847                if (need_out)
 848                        close_pair(fdout);
 849                else if (cmd->out)
 850                        close(cmd->out);
 851                if (need_err)
 852                        close_pair(fderr);
 853                else if (cmd->err)
 854                        close(cmd->err);
 855                child_process_clear(cmd);
 856                errno = failed_errno;
 857                return -1;
 858        }
 859
 860        if (need_in)
 861                close(fdin[0]);
 862        else if (cmd->in)
 863                close(cmd->in);
 864
 865        if (need_out)
 866                close(fdout[1]);
 867        else if (cmd->out)
 868                close(cmd->out);
 869
 870        if (need_err)
 871                close(fderr[1]);
 872        else if (cmd->err)
 873                close(cmd->err);
 874
 875        return 0;
 876}
 877
 878int finish_command(struct child_process *cmd)
 879{
 880        int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
 881        child_process_clear(cmd);
 882        return ret;
 883}
 884
 885int finish_command_in_signal(struct child_process *cmd)
 886{
 887        return wait_or_whine(cmd->pid, cmd->argv[0], 1);
 888}
 889
 890
 891int run_command(struct child_process *cmd)
 892{
 893        int code;
 894
 895        if (cmd->out < 0 || cmd->err < 0)
 896                die("BUG: run_command with a pipe can cause deadlock");
 897
 898        code = start_command(cmd);
 899        if (code)
 900                return code;
 901        return finish_command(cmd);
 902}
 903
 904int run_command_v_opt(const char **argv, int opt)
 905{
 906        return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
 907}
 908
 909int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
 910{
 911        struct child_process cmd = CHILD_PROCESS_INIT;
 912        cmd.argv = argv;
 913        cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
 914        cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
 915        cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
 916        cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
 917        cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
 918        cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
 919        cmd.dir = dir;
 920        cmd.env = env;
 921        return run_command(&cmd);
 922}
 923
 924#ifndef NO_PTHREADS
 925static pthread_t main_thread;
 926static int main_thread_set;
 927static pthread_key_t async_key;
 928static pthread_key_t async_die_counter;
 929
 930static void *run_thread(void *data)
 931{
 932        struct async *async = data;
 933        intptr_t ret;
 934
 935        if (async->isolate_sigpipe) {
 936                sigset_t mask;
 937                sigemptyset(&mask);
 938                sigaddset(&mask, SIGPIPE);
 939                if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
 940                        ret = error("unable to block SIGPIPE in async thread");
 941                        return (void *)ret;
 942                }
 943        }
 944
 945        pthread_setspecific(async_key, async);
 946        ret = async->proc(async->proc_in, async->proc_out, async->data);
 947        return (void *)ret;
 948}
 949
 950static NORETURN void die_async(const char *err, va_list params)
 951{
 952        vreportf("fatal: ", err, params);
 953
 954        if (in_async()) {
 955                struct async *async = pthread_getspecific(async_key);
 956                if (async->proc_in >= 0)
 957                        close(async->proc_in);
 958                if (async->proc_out >= 0)
 959                        close(async->proc_out);
 960                pthread_exit((void *)128);
 961        }
 962
 963        exit(128);
 964}
 965
 966static int async_die_is_recursing(void)
 967{
 968        void *ret = pthread_getspecific(async_die_counter);
 969        pthread_setspecific(async_die_counter, (void *)1);
 970        return ret != NULL;
 971}
 972
 973int in_async(void)
 974{
 975        if (!main_thread_set)
 976                return 0; /* no asyncs started yet */
 977        return !pthread_equal(main_thread, pthread_self());
 978}
 979
 980static void NORETURN async_exit(int code)
 981{
 982        pthread_exit((void *)(intptr_t)code);
 983}
 984
 985#else
 986
 987static struct {
 988        void (**handlers)(void);
 989        size_t nr;
 990        size_t alloc;
 991} git_atexit_hdlrs;
 992
 993static int git_atexit_installed;
 994
 995static void git_atexit_dispatch(void)
 996{
 997        size_t i;
 998
 999        for (i=git_atexit_hdlrs.nr ; i ; i--)
1000                git_atexit_hdlrs.handlers[i-1]();
1001}
1002
1003static void git_atexit_clear(void)
1004{
1005        free(git_atexit_hdlrs.handlers);
1006        memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1007        git_atexit_installed = 0;
1008}
1009
1010#undef atexit
1011int git_atexit(void (*handler)(void))
1012{
1013        ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1014        git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1015        if (!git_atexit_installed) {
1016                if (atexit(&git_atexit_dispatch))
1017                        return -1;
1018                git_atexit_installed = 1;
1019        }
1020        return 0;
1021}
1022#define atexit git_atexit
1023
1024static int process_is_async;
1025int in_async(void)
1026{
1027        return process_is_async;
1028}
1029
1030static void NORETURN async_exit(int code)
1031{
1032        exit(code);
1033}
1034
1035#endif
1036
1037void check_pipe(int err)
1038{
1039        if (err == EPIPE) {
1040                if (in_async())
1041                        async_exit(141);
1042
1043                signal(SIGPIPE, SIG_DFL);
1044                raise(SIGPIPE);
1045                /* Should never happen, but just in case... */
1046                exit(141);
1047        }
1048}
1049
1050int start_async(struct async *async)
1051{
1052        int need_in, need_out;
1053        int fdin[2], fdout[2];
1054        int proc_in, proc_out;
1055
1056        need_in = async->in < 0;
1057        if (need_in) {
1058                if (pipe(fdin) < 0) {
1059                        if (async->out > 0)
1060                                close(async->out);
1061                        return error_errno("cannot create pipe");
1062                }
1063                async->in = fdin[1];
1064        }
1065
1066        need_out = async->out < 0;
1067        if (need_out) {
1068                if (pipe(fdout) < 0) {
1069                        if (need_in)
1070                                close_pair(fdin);
1071                        else if (async->in)
1072                                close(async->in);
1073                        return error_errno("cannot create pipe");
1074                }
1075                async->out = fdout[0];
1076        }
1077
1078        if (need_in)
1079                proc_in = fdin[0];
1080        else if (async->in)
1081                proc_in = async->in;
1082        else
1083                proc_in = -1;
1084
1085        if (need_out)
1086                proc_out = fdout[1];
1087        else if (async->out)
1088                proc_out = async->out;
1089        else
1090                proc_out = -1;
1091
1092#ifdef NO_PTHREADS
1093        /* Flush stdio before fork() to avoid cloning buffers */
1094        fflush(NULL);
1095
1096        async->pid = fork();
1097        if (async->pid < 0) {
1098                error_errno("fork (async) failed");
1099                goto error;
1100        }
1101        if (!async->pid) {
1102                if (need_in)
1103                        close(fdin[1]);
1104                if (need_out)
1105                        close(fdout[0]);
1106                git_atexit_clear();
1107                process_is_async = 1;
1108                exit(!!async->proc(proc_in, proc_out, async->data));
1109        }
1110
1111        mark_child_for_cleanup(async->pid, NULL);
1112
1113        if (need_in)
1114                close(fdin[0]);
1115        else if (async->in)
1116                close(async->in);
1117
1118        if (need_out)
1119                close(fdout[1]);
1120        else if (async->out)
1121                close(async->out);
1122#else
1123        if (!main_thread_set) {
1124                /*
1125                 * We assume that the first time that start_async is called
1126                 * it is from the main thread.
1127                 */
1128                main_thread_set = 1;
1129                main_thread = pthread_self();
1130                pthread_key_create(&async_key, NULL);
1131                pthread_key_create(&async_die_counter, NULL);
1132                set_die_routine(die_async);
1133                set_die_is_recursing_routine(async_die_is_recursing);
1134        }
1135
1136        if (proc_in >= 0)
1137                set_cloexec(proc_in);
1138        if (proc_out >= 0)
1139                set_cloexec(proc_out);
1140        async->proc_in = proc_in;
1141        async->proc_out = proc_out;
1142        {
1143                int err = pthread_create(&async->tid, NULL, run_thread, async);
1144                if (err) {
1145                        error_errno("cannot create thread");
1146                        goto error;
1147                }
1148        }
1149#endif
1150        return 0;
1151
1152error:
1153        if (need_in)
1154                close_pair(fdin);
1155        else if (async->in)
1156                close(async->in);
1157
1158        if (need_out)
1159                close_pair(fdout);
1160        else if (async->out)
1161                close(async->out);
1162        return -1;
1163}
1164
1165int finish_async(struct async *async)
1166{
1167#ifdef NO_PTHREADS
1168        return wait_or_whine(async->pid, "child process", 0);
1169#else
1170        void *ret = (void *)(intptr_t)(-1);
1171
1172        if (pthread_join(async->tid, &ret))
1173                error("pthread_join failed");
1174        return (int)(intptr_t)ret;
1175#endif
1176}
1177
1178const char *find_hook(const char *name)
1179{
1180        static struct strbuf path = STRBUF_INIT;
1181
1182        strbuf_reset(&path);
1183        strbuf_git_path(&path, "hooks/%s", name);
1184        if (access(path.buf, X_OK) < 0) {
1185#ifdef STRIP_EXTENSION
1186                strbuf_addstr(&path, STRIP_EXTENSION);
1187                if (access(path.buf, X_OK) >= 0)
1188                        return path.buf;
1189#endif
1190                return NULL;
1191        }
1192        return path.buf;
1193}
1194
1195int run_hook_ve(const char *const *env, const char *name, va_list args)
1196{
1197        struct child_process hook = CHILD_PROCESS_INIT;
1198        const char *p;
1199
1200        p = find_hook(name);
1201        if (!p)
1202                return 0;
1203
1204        argv_array_push(&hook.args, p);
1205        while ((p = va_arg(args, const char *)))
1206                argv_array_push(&hook.args, p);
1207        hook.env = env;
1208        hook.no_stdin = 1;
1209        hook.stdout_to_stderr = 1;
1210
1211        return run_command(&hook);
1212}
1213
1214int run_hook_le(const char *const *env, const char *name, ...)
1215{
1216        va_list args;
1217        int ret;
1218
1219        va_start(args, name);
1220        ret = run_hook_ve(env, name, args);
1221        va_end(args);
1222
1223        return ret;
1224}
1225
1226struct io_pump {
1227        /* initialized by caller */
1228        int fd;
1229        int type; /* POLLOUT or POLLIN */
1230        union {
1231                struct {
1232                        const char *buf;
1233                        size_t len;
1234                } out;
1235                struct {
1236                        struct strbuf *buf;
1237                        size_t hint;
1238                } in;
1239        } u;
1240
1241        /* returned by pump_io */
1242        int error; /* 0 for success, otherwise errno */
1243
1244        /* internal use */
1245        struct pollfd *pfd;
1246};
1247
1248static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1249{
1250        int pollsize = 0;
1251        int i;
1252
1253        for (i = 0; i < nr; i++) {
1254                struct io_pump *io = &slots[i];
1255                if (io->fd < 0)
1256                        continue;
1257                pfd[pollsize].fd = io->fd;
1258                pfd[pollsize].events = io->type;
1259                io->pfd = &pfd[pollsize++];
1260        }
1261
1262        if (!pollsize)
1263                return 0;
1264
1265        if (poll(pfd, pollsize, -1) < 0) {
1266                if (errno == EINTR)
1267                        return 1;
1268                die_errno("poll failed");
1269        }
1270
1271        for (i = 0; i < nr; i++) {
1272                struct io_pump *io = &slots[i];
1273
1274                if (io->fd < 0)
1275                        continue;
1276
1277                if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1278                        continue;
1279
1280                if (io->type == POLLOUT) {
1281                        ssize_t len = xwrite(io->fd,
1282                                             io->u.out.buf, io->u.out.len);
1283                        if (len < 0) {
1284                                io->error = errno;
1285                                close(io->fd);
1286                                io->fd = -1;
1287                        } else {
1288                                io->u.out.buf += len;
1289                                io->u.out.len -= len;
1290                                if (!io->u.out.len) {
1291                                        close(io->fd);
1292                                        io->fd = -1;
1293                                }
1294                        }
1295                }
1296
1297                if (io->type == POLLIN) {
1298                        ssize_t len = strbuf_read_once(io->u.in.buf,
1299                                                       io->fd, io->u.in.hint);
1300                        if (len < 0)
1301                                io->error = errno;
1302                        if (len <= 0) {
1303                                close(io->fd);
1304                                io->fd = -1;
1305                        }
1306                }
1307        }
1308
1309        return 1;
1310}
1311
1312static int pump_io(struct io_pump *slots, int nr)
1313{
1314        struct pollfd *pfd;
1315        int i;
1316
1317        for (i = 0; i < nr; i++)
1318                slots[i].error = 0;
1319
1320        ALLOC_ARRAY(pfd, nr);
1321        while (pump_io_round(slots, nr, pfd))
1322                ; /* nothing */
1323        free(pfd);
1324
1325        /* There may be multiple errno values, so just pick the first. */
1326        for (i = 0; i < nr; i++) {
1327                if (slots[i].error) {
1328                        errno = slots[i].error;
1329                        return -1;
1330                }
1331        }
1332        return 0;
1333}
1334
1335
1336int pipe_command(struct child_process *cmd,
1337                 const char *in, size_t in_len,
1338                 struct strbuf *out, size_t out_hint,
1339                 struct strbuf *err, size_t err_hint)
1340{
1341        struct io_pump io[3];
1342        int nr = 0;
1343
1344        if (in)
1345                cmd->in = -1;
1346        if (out)
1347                cmd->out = -1;
1348        if (err)
1349                cmd->err = -1;
1350
1351        if (start_command(cmd) < 0)
1352                return -1;
1353
1354        if (in) {
1355                io[nr].fd = cmd->in;
1356                io[nr].type = POLLOUT;
1357                io[nr].u.out.buf = in;
1358                io[nr].u.out.len = in_len;
1359                nr++;
1360        }
1361        if (out) {
1362                io[nr].fd = cmd->out;
1363                io[nr].type = POLLIN;
1364                io[nr].u.in.buf = out;
1365                io[nr].u.in.hint = out_hint;
1366                nr++;
1367        }
1368        if (err) {
1369                io[nr].fd = cmd->err;
1370                io[nr].type = POLLIN;
1371                io[nr].u.in.buf = err;
1372                io[nr].u.in.hint = err_hint;
1373                nr++;
1374        }
1375
1376        if (pump_io(io, nr) < 0) {
1377                finish_command(cmd); /* throw away exit code */
1378                return -1;
1379        }
1380
1381        return finish_command(cmd);
1382}
1383
1384enum child_state {
1385        GIT_CP_FREE,
1386        GIT_CP_WORKING,
1387        GIT_CP_WAIT_CLEANUP,
1388};
1389
1390struct parallel_processes {
1391        void *data;
1392
1393        int max_processes;
1394        int nr_processes;
1395
1396        get_next_task_fn get_next_task;
1397        start_failure_fn start_failure;
1398        task_finished_fn task_finished;
1399
1400        struct {
1401                enum child_state state;
1402                struct child_process process;
1403                struct strbuf err;
1404                void *data;
1405        } *children;
1406        /*
1407         * The struct pollfd is logically part of *children,
1408         * but the system call expects it as its own array.
1409         */
1410        struct pollfd *pfd;
1411
1412        unsigned shutdown : 1;
1413
1414        int output_owner;
1415        struct strbuf buffered_output; /* of finished children */
1416};
1417
1418static int default_start_failure(struct strbuf *out,
1419                                 void *pp_cb,
1420                                 void *pp_task_cb)
1421{
1422        return 0;
1423}
1424
1425static int default_task_finished(int result,
1426                                 struct strbuf *out,
1427                                 void *pp_cb,
1428                                 void *pp_task_cb)
1429{
1430        return 0;
1431}
1432
1433static void kill_children(struct parallel_processes *pp, int signo)
1434{
1435        int i, n = pp->max_processes;
1436
1437        for (i = 0; i < n; i++)
1438                if (pp->children[i].state == GIT_CP_WORKING)
1439                        kill(pp->children[i].process.pid, signo);
1440}
1441
1442static struct parallel_processes *pp_for_signal;
1443
1444static void handle_children_on_signal(int signo)
1445{
1446        kill_children(pp_for_signal, signo);
1447        sigchain_pop(signo);
1448        raise(signo);
1449}
1450
1451static void pp_init(struct parallel_processes *pp,
1452                    int n,
1453                    get_next_task_fn get_next_task,
1454                    start_failure_fn start_failure,
1455                    task_finished_fn task_finished,
1456                    void *data)
1457{
1458        int i;
1459
1460        if (n < 1)
1461                n = online_cpus();
1462
1463        pp->max_processes = n;
1464
1465        trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1466
1467        pp->data = data;
1468        if (!get_next_task)
1469                die("BUG: you need to specify a get_next_task function");
1470        pp->get_next_task = get_next_task;
1471
1472        pp->start_failure = start_failure ? start_failure : default_start_failure;
1473        pp->task_finished = task_finished ? task_finished : default_task_finished;
1474
1475        pp->nr_processes = 0;
1476        pp->output_owner = 0;
1477        pp->shutdown = 0;
1478        pp->children = xcalloc(n, sizeof(*pp->children));
1479        pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1480        strbuf_init(&pp->buffered_output, 0);
1481
1482        for (i = 0; i < n; i++) {
1483                strbuf_init(&pp->children[i].err, 0);
1484                child_process_init(&pp->children[i].process);
1485                pp->pfd[i].events = POLLIN | POLLHUP;
1486                pp->pfd[i].fd = -1;
1487        }
1488
1489        pp_for_signal = pp;
1490        sigchain_push_common(handle_children_on_signal);
1491}
1492
1493static void pp_cleanup(struct parallel_processes *pp)
1494{
1495        int i;
1496
1497        trace_printf("run_processes_parallel: done");
1498        for (i = 0; i < pp->max_processes; i++) {
1499                strbuf_release(&pp->children[i].err);
1500                child_process_clear(&pp->children[i].process);
1501        }
1502
1503        free(pp->children);
1504        free(pp->pfd);
1505
1506        /*
1507         * When get_next_task added messages to the buffer in its last
1508         * iteration, the buffered output is non empty.
1509         */
1510        strbuf_write(&pp->buffered_output, stderr);
1511        strbuf_release(&pp->buffered_output);
1512
1513        sigchain_pop_common();
1514}
1515
1516/* returns
1517 *  0 if a new task was started.
1518 *  1 if no new jobs was started (get_next_task ran out of work, non critical
1519 *    problem with starting a new command)
1520 * <0 no new job was started, user wishes to shutdown early. Use negative code
1521 *    to signal the children.
1522 */
1523static int pp_start_one(struct parallel_processes *pp)
1524{
1525        int i, code;
1526
1527        for (i = 0; i < pp->max_processes; i++)
1528                if (pp->children[i].state == GIT_CP_FREE)
1529                        break;
1530        if (i == pp->max_processes)
1531                die("BUG: bookkeeping is hard");
1532
1533        code = pp->get_next_task(&pp->children[i].process,
1534                                 &pp->children[i].err,
1535                                 pp->data,
1536                                 &pp->children[i].data);
1537        if (!code) {
1538                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1539                strbuf_reset(&pp->children[i].err);
1540                return 1;
1541        }
1542        pp->children[i].process.err = -1;
1543        pp->children[i].process.stdout_to_stderr = 1;
1544        pp->children[i].process.no_stdin = 1;
1545
1546        if (start_command(&pp->children[i].process)) {
1547                code = pp->start_failure(&pp->children[i].err,
1548                                         pp->data,
1549                                         pp->children[i].data);
1550                strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1551                strbuf_reset(&pp->children[i].err);
1552                if (code)
1553                        pp->shutdown = 1;
1554                return code;
1555        }
1556
1557        pp->nr_processes++;
1558        pp->children[i].state = GIT_CP_WORKING;
1559        pp->pfd[i].fd = pp->children[i].process.err;
1560        return 0;
1561}
1562
1563static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1564{
1565        int i;
1566
1567        while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1568                if (errno == EINTR)
1569                        continue;
1570                pp_cleanup(pp);
1571                die_errno("poll");
1572        }
1573
1574        /* Buffer output from all pipes. */
1575        for (i = 0; i < pp->max_processes; i++) {
1576                if (pp->children[i].state == GIT_CP_WORKING &&
1577                    pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1578                        int n = strbuf_read_once(&pp->children[i].err,
1579                                                 pp->children[i].process.err, 0);
1580                        if (n == 0) {
1581                                close(pp->children[i].process.err);
1582                                pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1583                        } else if (n < 0)
1584                                if (errno != EAGAIN)
1585                                        die_errno("read");
1586                }
1587        }
1588}
1589
1590static void pp_output(struct parallel_processes *pp)
1591{
1592        int i = pp->output_owner;
1593        if (pp->children[i].state == GIT_CP_WORKING &&
1594            pp->children[i].err.len) {
1595                strbuf_write(&pp->children[i].err, stderr);
1596                strbuf_reset(&pp->children[i].err);
1597        }
1598}
1599
1600static int pp_collect_finished(struct parallel_processes *pp)
1601{
1602        int i, code;
1603        int n = pp->max_processes;
1604        int result = 0;
1605
1606        while (pp->nr_processes > 0) {
1607                for (i = 0; i < pp->max_processes; i++)
1608                        if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1609                                break;
1610                if (i == pp->max_processes)
1611                        break;
1612
1613                code = finish_command(&pp->children[i].process);
1614
1615                code = pp->task_finished(code,
1616                                         &pp->children[i].err, pp->data,
1617                                         pp->children[i].data);
1618
1619                if (code)
1620                        result = code;
1621                if (code < 0)
1622                        break;
1623
1624                pp->nr_processes--;
1625                pp->children[i].state = GIT_CP_FREE;
1626                pp->pfd[i].fd = -1;
1627                child_process_init(&pp->children[i].process);
1628
1629                if (i != pp->output_owner) {
1630                        strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1631                        strbuf_reset(&pp->children[i].err);
1632                } else {
1633                        strbuf_write(&pp->children[i].err, stderr);
1634                        strbuf_reset(&pp->children[i].err);
1635
1636                        /* Output all other finished child processes */
1637                        strbuf_write(&pp->buffered_output, stderr);
1638                        strbuf_reset(&pp->buffered_output);
1639
1640                        /*
1641                         * Pick next process to output live.
1642                         * NEEDSWORK:
1643                         * For now we pick it randomly by doing a round
1644                         * robin. Later we may want to pick the one with
1645                         * the most output or the longest or shortest
1646                         * running process time.
1647                         */
1648                        for (i = 0; i < n; i++)
1649                                if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1650                                        break;
1651                        pp->output_owner = (pp->output_owner + i) % n;
1652                }
1653        }
1654        return result;
1655}
1656
1657int run_processes_parallel(int n,
1658                           get_next_task_fn get_next_task,
1659                           start_failure_fn start_failure,
1660                           task_finished_fn task_finished,
1661                           void *pp_cb)
1662{
1663        int i, code;
1664        int output_timeout = 100;
1665        int spawn_cap = 4;
1666        struct parallel_processes pp;
1667
1668        pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1669        while (1) {
1670                for (i = 0;
1671                    i < spawn_cap && !pp.shutdown &&
1672                    pp.nr_processes < pp.max_processes;
1673                    i++) {
1674                        code = pp_start_one(&pp);
1675                        if (!code)
1676                                continue;
1677                        if (code < 0) {
1678                                pp.shutdown = 1;
1679                                kill_children(&pp, -code);
1680                        }
1681                        break;
1682                }
1683                if (!pp.nr_processes)
1684                        break;
1685                pp_buffer_stderr(&pp, output_timeout);
1686                pp_output(&pp);
1687                code = pp_collect_finished(&pp);
1688                if (code) {
1689                        pp.shutdown = 1;
1690                        if (code < 0)
1691                                kill_children(&pp, -code);
1692                }
1693        }
1694
1695        pp_cleanup(&pp);
1696        return 0;
1697}