//////////////////////////////////////////////////////////////////////////////// // // // This software is supplied under the terms of a license agreement or // // nondisclosure agreement with Mitov Software and may not be copied // // or disclosed except in accordance with the terms of that agreement. // // Copyright(c) 2002-2016 Mitov Software. All Rights Reserved. // // // //////////////////////////////////////////////////////////////////////////////// #ifndef _MITOV_DHT_SENSOR_h #define _MITOV_DHT_SENSOR_h #include namespace Mitov { //--------------------------------------------------------------------------- template class BasicDHTSensor : public OpenWire::Component, public Mitov::ClockingSupport { typedef OpenWire::Component inherited; const uint32_t MIN_INTERVAL = 2000; public: OpenWire::SourcePin TemperatureOutputPin; OpenWire::SourcePin HumidityOutputPin; public: bool InFahrenheit = false; protected: uint8_t data[5]; uint32_t _lastreadtime = -MIN_INTERVAL; uint32_t _maxcycles; bool _lastresult = false; #ifdef __AVR // Use direct GPIO access on an 8-bit AVR so keep track of the port and bitmask // for the digital pin connected to the DHT. Other platforms will use digitalRead. uint8_t _bit, _port; #endif // DHT *FSensor; protected: virtual void SystemInit() override { pinMode( PIN_NUMBER, INPUT_PULLUP ); // FSensor = new DHT( PIN_NUMBER, SENSOR_TYPE ); // FSensor->begin(); inherited::SystemInit(); } virtual void SystemLoopBegin( unsigned long currentMicros ) override { if( ! ClockInputPin.IsConnected() ) ReadSensor(); inherited::SystemLoopBegin( currentMicros ); } protected: virtual void ReadSensor() = 0; uint32_t expectPulse(bool level) { uint32_t count = 0; // On AVR platforms use direct GPIO port access as it's much faster and better // for catching pulses that are 10's of microseconds in length: #ifdef __AVR uint8_t portState = level ? _bit : 0; while ((*portInputRegister(_port) & _bit) == portState) // Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266 // right now, perhaps bugs in direct port access functions?). #else while (digitalRead(PIN_NUMBER) == level) #endif { if (count++ >= _maxcycles) return 0; // Exceeded timeout, fail. } return count; } bool TryRead() { uint32_t currenttime = millis(); if ( (currenttime - _lastreadtime) < 2000 ) return _lastresult; // return last correct measurement _lastreadtime = currenttime; // Reset 40 bits of received data to zero. data[0] = data[1] = data[2] = data[3] = data[4] = 0; // Send start signal. See DHT datasheet for full signal diagram: // http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf // Go into high impedence state to let pull-up raise data line level and // start the reading process. digitalWrite( PIN_NUMBER, HIGH); delay(250); // First set data line low for 20 milliseconds. pinMode( PIN_NUMBER, OUTPUT); digitalWrite( PIN_NUMBER, LOW); delay(20); uint32_t cycles[80]; { // Turn off interrupts temporarily because the next sections are timing critical // and we don't want any interruptions. InterruptLock lock; // End the start signal by setting data line high for 40 microseconds. digitalWrite( PIN_NUMBER, HIGH); delayMicroseconds(40); // Now start reading the data line to get the value from the DHT sensor. pinMode( PIN_NUMBER, INPUT_PULLUP ); delayMicroseconds(10); // Delay a bit to let sensor pull data line low. // First expect a low signal for ~80 microseconds followed by a high signal // for ~80 microseconds again. if (expectPulse(LOW) == 0) { // DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse.")); _lastresult = false; return _lastresult; } if (expectPulse(HIGH) == 0) { // DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse.")); _lastresult = false; return _lastresult; } // Now read the 40 bits sent by the sensor. Each bit is sent as a 50 // microsecond low pulse followed by a variable length high pulse. If the // high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds // then it's a 1. We measure the cycle count of the initial 50us low pulse // and use that to compare to the cycle count of the high pulse to determine // if the bit is a 0 (high state cycle count < low state cycle count), or a // 1 (high state cycle count > low state cycle count). Note that for speed all // the pulses are read into a array and then examined in a later step. for (int i=0; i<80; i+=2) { cycles[i] = expectPulse(LOW); cycles[i+1] = expectPulse(HIGH); } } // Timing critical code is now complete. // Inspect pulses and determine which ones are 0 (high state cycle count < low // state cycle count), or 1 (high state cycle count > low state cycle count). for (int i=0; i<40; ++i) { uint32_t lowCycles = cycles[2*i]; uint32_t highCycles = cycles[2*i+1]; if ((lowCycles == 0) || (highCycles == 0)) { // DEBUG_PRINTLN(F("Timeout waiting for pulse.")); _lastresult = false; return _lastresult; } data[i/8] <<= 1; // Now compare the low and high cycle times to see if the bit is a 0 or 1. if (highCycles > lowCycles) // High cycles are greater than 50us low cycle count, must be a 1. data[i/8] |= 1; // Else high cycles are less than (or equal to, a weird case) the 50us low // cycle count so this must be a zero. Nothing needs to be changed in the // stored data. } /* DEBUG_PRINTLN(F("Received:")); DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? ")); DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX); */ // Check we read 40 bits and that the checksum matches. if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) { _lastresult = true; return _lastresult; } else { // DEBUG_PRINTLN(F("Checksum failure!")); _lastresult = false; return _lastresult; } } protected: void DoClockReceive( void *_Data ) override { ReadSensor(); } public: BasicDHTSensor() { #ifdef __AVR _bit = digitalPinToBitMask( PIN_NUMBER ); _port = digitalPinToPort( PIN_NUMBER ); #endif _maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for // reading pulses from DHT sensor. } }; //--------------------------------------------------------------------------- template class DHT11Sensor : public BasicDHTSensor { typedef BasicDHTSensor inherited; protected: virtual void ReadSensor() override { if( ! inherited::TryRead()) return; if( inherited::TemperatureOutputPin.IsConnected() ) { float AValue = inherited::data[2]; if( inherited::InFahrenheit ) AValue = ConvertCtoF( AValue ); inherited::TemperatureOutputPin.Notify( &AValue ); } if( inherited::HumidityOutputPin.IsConnected() ) { float AValue = inherited::data[0]; inherited::HumidityOutputPin.Notify( &AValue ); } } }; //--------------------------------------------------------------------------- template class DHT22Sensor : public BasicDHTSensor { typedef BasicDHTSensor inherited; protected: virtual void ReadSensor() override { if( ! inherited::TryRead()) return; if( inherited::TemperatureOutputPin.IsConnected() ) { float AValue = inherited::data[2] & 0x7F; AValue *= 256; AValue += inherited::data[3]; AValue *= 0.1; if( inherited::data[2] & 0x80 ) AValue *= -1; if( inherited::InFahrenheit ) AValue = ConvertCtoF( AValue ); inherited::TemperatureOutputPin.Notify( &AValue ); } if( inherited::HumidityOutputPin.IsConnected() ) { float AValue = inherited::data[0]; AValue *= 256; AValue += inherited::data[1]; AValue *= 0.1; inherited::HumidityOutputPin.Notify( &AValue ); } } }; //--------------------------------------------------------------------------- } #endif